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Semidiscrete and Single Step Fully Discrete 
Approximations for Second Order Hyperbolic 
Equations With Time-Dependent Coefficients 

By Laurence A. Bales 

Abstract. L2 norm error estimates are proved for finite element approximations to the 
solutions of initial boundary value problems for second order hyperbolic partial differential 
equations with time-dependent coefficients. Optimal order rates of convergence are shown for 
semidiscrete and single step fully discrete schemes using specially constructed initial data. The 
initial data are designed so that the data used for the fully discrete equation is reasonable to 
compute and so that the optimal order estimates can be proved. 

1. Introduction. In this paper we shall consider the approximate solution of the 
initial boundary value problem 

u, L(t)u = E a (i(X, t) ax ) a(x, t) u in Skx (O, T] , 

(1.1) U(X,t)=0 on a X(O,], 

u(x,O) = u?(x) in 2, 

ut(x,O) = u?(x) in S. 

Here S2 is a bounded domain in RN with sufficiently smooth boundary as2, ajk(x, t) 

and ao(x, t) are sufficiently smooth real-valued functions, the matrix (a1k) is 
symmetric and uniformly positive definite and ao is nonnegative on D. 

For s >? 0, HS(S2) = Hs will denote the Sobolev space of real-valued functions on 
2. The norm on Hs is denoted by 11 - Ils The inner product on L2(S2) = L2 = Ho is 
denoted by (., ) and the associated norm by 11 11 HO denotes the subspace of 
functions in H' that vanish (in the sense of trace) on as2. 

L(t) is a smooth family of unbounded selfadjoint operators on L2 with domain 
DL = H2 n HO and a smooth family of bounded operators from H'12 nl DL to HI, 
for 1 > 0. L(j)(t) = (d/dt)jL(t) is calculated by differentiating the coefficients of 
L(t) with respect to time. 

The solution operator T(t): L2 -- DL of the elliptic problem (w = Tf) 

Lw=f ins2, w=O on a2, 

satisfies the equation 

(1.2) a(T(t)f, v) = (f, v) for all v E HO, 
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for given f E L2, where a(, ) is the bilinear form 

(1.3) a(0A)=f4( E aIk a + aoo) dx 

for p, 4 E- H'. For 1 > 0, T(t) is a smooth family of bounded operators from H' to 
H+q2 n DL. For m > 0, the bilinear form a(m)(., ) is defined as 

j, k=i atm axj aXk 

for p, 4 E H'. 
Section 2 contains two regularity theorems for the solution of (1.1). 
In Section 3, the approximate solution operator Th (defined using a Galerkin finite 

element method on subspaces of piecewise polynomials of degree r - 1) is intro- 
duced and is used to define the semidiscrete approximation uh (t). For integer J > 0, 
the following estimate is proved. 

sup II(u(J)(t) - Uhj)(0)) 
O t T 

(1.5) < Chr(IIUOIIJ+r+1 + ||Ut?j||+r) 

+ C L (||T1l/2(0)(u('+1)(0) - u0+ 1)(0))fl + |Iu(J)(0) - u(j)(0)||). 
J=O 

Here u(j)(t) and u(.1)(t), forj = 0,...,J, denote thejth time derivative of u(t) and 
uh(t), respectively. 

In Section 4, a single step fully discrete approximation W,n to Uh(nk), where k 
denotes the discrete time step, is defined. These schemes are based on a class of 
methods for approximately solving stiff ordinary differential equations. Methods of 
order v are considered, where 1 < v < 4. The fourth order method corresponds to 
the 2-2 rational Pade approximation to the exponential when it is applied to 
equations with time-independent coefficients. Only unconditionally stable (e.g., A- 
stable methods) are considered. The following fully discrete error estimate is proved: 

v+1 

11Uh('T) - W,N1 | Ckp ( |Th h2 (h)u?)(o) + 

(1.6) j=O 

+ C|I Qo(Uh(0) - W?) 11o 

where N = T/k and IIIQO(Uh(0) - W0)IlIo measures the error in the initial data of 
the fully discrete problem. 

In Section 5, special operators are constructed and are used to define the initial 
data Uh(0) for the semidiscrete problem. Uh(0) never has to be computed since it is 
close to a special choice of the initial data W? (which is reasonable to compute) for 
the fully discrete problem. The proofs of Theorems 5.1 and 5.2 are contained in 
Section 8 which appears in the supplements section of this issue. 

In Section 6, the results of Sections 3, 4 and 5 are combined in order to derive the 
L2 error estimates. The special definitions of Uh(0) and W? imply appropriate 
bounds for the terms after the inequalities in (1.5) and (1.6). In other words, optimal 
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order error estimates for the initial data of the semidiscrete and fully discrete 
problems and bounds for time derivatives of the solution of the semidiscrete 
equation are obtained. Therefore, the triangle inequality and (1.5) and (1.6) imply 
the optimal L2 estimate 

(1.7) ||u(T) - WiNd; <C(hr + kp)(IIuoIIp + ||u0?l,_) 

for a certain integer p. 
There is an extensive literature concerned with the error analysis of the methods 

mentioned above for linear parabolic equations and second order linear hyperbolic 
equations. Bramble, Schatz, Thomee and Wahlbin [6] analyzed semidiscrete ap- 
proximations for parabolic equations with time-independent coefficients and Baker, 
Bramble, and Thomee [3] analyzed single step fully discrete approximations. Zlamal 
[22] analyzed fully discrete approximations based on linear multi-step methods. 
Sammon in [20] and [21], Bramble and Sammon [5] and Mingyou and Thomee [19] 
analyzed approximations for parabolic equations with time-dependent coefficients. 

For second order hyperbolic equations with time-independent coefficients Baker 
and Bramble [2] analyzed semidiscrete and single step fully discrete approximations. 
Baker, Dougalis and Serbin [4] analyzed fully discrete approximations based on 
two-step schemes. Two-step schemes producing second order accuracy were also 
studied by Baker [1] and Dupont [11]. In addition, for high order single step 
methods, see Crouzeix [7] and Gekeler [13], and for multi-step methods, see Dougalis 
[8] and Gekeler [12]. 

Some of the techniques and results in this work are similar to those in Bramble 
and Sammon [5], Sammon [20], [21], where parabolic equations with time-dependent 
coefficients were analyzed. The analysis here for the hyperbolic equation (1.1) 
involves noncommutative skew-symmetric operators (the analogous operators in the 
parabolic case are selfadjoint and positive definite) and special time-dependent inner 
products. 

Throughout this work C (sometimes used with a subscript) will denote a general 
positive constant which is not necessarily the same in any two places. 

2. Regularity. This section contains two regularity theorems for the solution u of 
(1.1) in L2-based Sobolev spaces. Theorem 2.1 concerns time derivatives of u and 
Theorem 2.2 includes estimates for mixed (time and space) derivatives of u. 

Let C?([O, T]; H) be the space of continuous functions from [0, T] to the Hilbert 
space H with the norm 

Ilf IICO([O,T];H) = sup Ijf(t)I IH < + Xc. 

tG[0,T] 

For integer i > 0 let u(') denote the ith time derivative of u. Also, define 

Uo = u0 

(2.1) u1 = uO, and 

u1= E 7 2 L('2J)(0) uj fori > 2. 
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ui is defined to correspond to the ith time derivative of u at t = 0 and for i > 2 is 
obtained by formally differentiating the equation utt = -Lu i - 2 times. Note that 
fori > 2 

(2.2) IIuiIi < C(IIuoIIi + |u?||i-1) and IIui-lll < C((IuoII, +||u 
THEOREM 2.1. Let i be a nonnegative integer. If 

(2.3) uJ e DL forj = O,...,i and ui1 e Ho, 

then there is a unique function u such that, for t e [0, T], u(t) e Ho and 

(u8tt,) + a (u, p) = 0 for all He o 
(2.4) u(O) =u 0 inHo, and 

ut (O) =u in L2. 

Furthermore, 

(2.5) flU(i)IICo([O,T];DL) + IIU('i+l)IICO([O,T];Hb) + IIU(i+2)IICo([O Tr]; L2) 

< C(IJU?1?i+2 +IIUOi+1) 

and 

(2.6) u('+2) + LuM') + ?($)L('-)u(J) = 0 in C0([O, T]; L 2). 

Proof. Notice that (2.3) implies that ui+2 e L2. From Gilardi [14] the solution of 
(2.4) exists and is unique and 

i+1 i+1 i+2 

(2.7) IIU( ||ICo([O,T];L2) + E IIU||)IICO([O,T];H,) E IIUIll1 + E i|u1ii) 
j=O 

Let p E Ho. Differentiating the equation 

(u(2)(t), O) + a(u(t), O) = 0 

k times gives 

(2.8) (u (k2)(t), O) + a(u(k)(t), O) + E ( a)a(k-j)(u(j)(t), <) = 0. 

The remaining parts of the theorem are proved by induction on k. For k = 0 we 
have 

(u(2)(t), p) + a(u(t), p) = O. 
Since u(2)(t) E L2, by elliptic regularity 

u(t) e DL and u(2)(t) + L(t)u(t) = 0. 

Furthermore, 

CIlu(t + h) - u(t)112 < |IL(t + h)(u(t + h) - u(t))II 

< JIL(t + h)u(t + h) - L(t)u(t)II + JIL(t)u(t) - L(t + h)u(t)II 

< ||U(2)(t + h) - u(2)(t)|| + ChIIu(t)112. 
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Since u(21 E C0([0, T]; L2) and u(t) E DL, it follows that u E C0([0, T]; DL) and 

IUIICO([O,T];DL) < CIU IU2IICO([OT];L2) Now assume 
j+2 

IIU(j)IIoCo([OT];DL) < C E IIU(P)IICo([o,T];L2) forj = 0 ... ,k - 1 and k < i. 
p=o 

Integrating by parts in (2.8) gives 

(u (k t) + 2 ) + a( u(k)(t), + k 
(J)(L(k-)U(j)(t) ) = 0. 

An argument similar to the one given above for k = 0 gives 

u (k2)(t) + Lu (k)(t) + E (J)L(k-)(t)u(')(t) = 0 

and u(k) E C0([0, T]; DL). Also, 
(k?2 

(2.9) ||U(k )||C?([0,T];DL) -< Ct E |lU(j)jjCo([o,T];L 2)) 
j=O 

Combining (2.2), (2.7) and (2.9) proves the theorem. 
The following technical lemma will be used in the proof of Theorem 2.2. 

LEMMA 2.1. For integers p > 1 and I > 0, the operator 

(2.10) TP= - ()TL(P-JTJ 

is a bounded operator from H' to H'+ 2 n Ho. 

Proof. Since 
p-l 

|T (P)f 1 1+ 2 C E JjTL(P-j)T(j)j,?+2 
j=0 

p-i p-i 

< C , ||L(P i)T(')f||, < c E ||T(J)f 111+25 
j=0 J=O 

and T is a bounded operator from H' to H'+ 2 n Ho, the result follows by induction. 
We can now prove 

THEOREM 2.2. For integers p > 0 and m > 1, the solution u of (1.1) satisfies the 
following estimates for t e [0, Ti]: 

p+2m 

(2.11) ||U(p) (0112m < C E ||u(j)(011| 
j=2 

p+2m-1 

(2.12) |U (0112m-1 < C E I (0)II 
J=1 

Proof. Equation (1.1) can be written u = -Tutt, so that 

u(p) = - Ej i ()P ) u(j+2). 
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Therefore, 
p 

(2.13) |IU(P)112m < C E ||T(P-J)U(j+2)I12m. 
j=O 

Lemma 2.1 and (2.13) imply that 
p p+2 

(2.14) JIU(P)112m < C E |IU(j2)J112m-2 = C E JIU'ji112m-2- 
j=O j=2 

(2.11) follows from (2.14) by induction. The proof of (2.12) is similar. 
Note that Theorem 2.1 and Theorem 2.2 imply that if uj E DL for j = 0, 1,..., 

p + m - 2 and up+m_1 E Ho, where p > 0 and m > 0 are integers such that 
p + m > 2, then for t E [0, T] 

(2.15) U(p) C(IIUOIpm + 

3. Semidiscrete Approximations. The solution operator T of the associated elliptic 
boundary value problem which is defined by 

a(Tf, v) = (f, v) for all v E HO, for givenf E L 

satisfies 

TL=I onDL and LT= I onL2. 

Let 0 < h < 1 be a parameter, and { Sh }< h <1 a family of finite dimensional 
subspaces of L2. We shall assume that we are given a corresponding family of 
operators Th: L2 -- Sh which approximates T and has the following properties: 

(i) Th is selfadjoint, positive semidefinite on L2, and positive definite on Sh. 
(ii) There is a positive integer r > 2, such that for integer j > 0, there exists a 

constant C(j) with 

(3.1) ||(T(J) - Th(,))f jj < C(j)hsIlf IlIs-2 

for all f E HS-2, 2 < s < r, and where T(;) and Th(j) denote the jth time derivative 
of T and Th, respectively. 

(iii) On Sh define Lh(t) = (Th(t))-l and L(k)(t) = dkLh(t)/dtk. For integer 
k > 0, there exists a constant C = C(k), which is independent of h, such that for 
t, s E [0, T] 

(3.2) I(Lhk)(t>p, C)j < C(k)(Lh(s)>, p) for all p E Sh. 

An example of a family of operators satisfying these assumptions is given by the 
following: Suppose that Sh C Ho so that elements of Sh vanish on au2. Assume 
further that Sh has the approximation property 

inf {||w - xiI + hllw - XlII , chhiilwlls for 1 < s < r. 
X E= Sh 

The operators Th: L2 -> Sh are defined by 

(3.3) a(Th f, X) = (f, X) for all X E Sh, for givenf E L2. 

With Th defined by (3.3) it follows that 

(LhP,4d) = a(p,4A) for allh,' E Sh. 
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For more details and other examples see Bramble, Schatz, Thomee and Wahlbin 
[6], Baker and Bramble [2], Mingyou and Thomee [19], Sammon [21], and Section 7. 

The hyperbolic problem (1.1) can be written 

Tutt + u = 0, u(O) = u0, ut(O) = u?. 

The semidiscrete approximation for the solution u is defined as the mapping Uh: 
[0, T] -* Sh satisfying 

Th(uh)t + Uh =?O <t T, 

Uh(O) = V (Uh)t(O) =Vt 

where v? and v? are elements of Sh which will be chosen to be close to uo and uo. 
This section contains two theorems about time derivatives of Uh. Theorem 3.1 is a 

bound for time derivatives of Uh(t) in terms of time derivatives at t = 0. Theorem 
3.2 is a bound for time derivatives of u(t) - Uh(t) in terms of its time derivatives at 
t = 0 and truncation error. The bounds derived for time derivatives of u(t) - uh(t) 

are used with a special choice of the initial data Uh(O) and (uh)t(O). In Section 6, we 
will show how this special choice for the initial data for the semidiscrete equation fits 
perfectly into the analysis of the fully discrete approximation. These two theorems 
concerning bounds for time derivatives of Uh are proved using energy methods. 

Differentiation of (3.4) yields terms containing time derivatives of Th. In order to 
bound these terms in the energy estimates we prove a technical lemma. Since 
ThLh = LhTh = I on Sh, fork > 0 

dk kk 
(3.5) k7(ThLh)= kE (J)T )Lh) =0, 

dtk 
h)Th h 

and 
(3.6) ~~~dk k =o 

-(LT) = E1)Lkij)T Q) =0 (3.6) tk ( LhTh ) h h ? 

Similar equations are valid (on the appropriate function spaces) if Th and Lh are 
replaced by T and L, respectively. Since Th and Lh are positive definite on Sh, Thl/2 

and L'7/2 exist and are positive definite on Sh. We note that (3.3) implies that 
ThP = Th, where P is the orthogonal projection in L2 from L2 to Sh. 

LEMMA 3.1. Let k > 0 be an integer and s, t E [0, T]. Then for all k E Sh, there 
exists a constant C which is independent of h such that 

(3 .7) || ~~Thl/2 (S5) L(h) ( t) T /2 (S 
s ) f| C|f| 

and 
(3.8) ||~~~JLlh/2 (S)Th(k)(t) Vh/2 (S)+ q C|+|| 

Proof. L(k)(t) is symmetric and we begin the proof by showing that T,(k)(t) is 
symmetric. Since Lh (t) Th (t) = Iand Th (t)Lh (t) = I, 

(3.9) T(k)(t) = -E h (j)Th(t)L(k-)(t)T4(i)(t) 

and 

(3.10) Thh(t) -? (t)T t) L(h) (Lt) Th(t). 
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Therefore, 

(Tk(k(t))* (ThJ)(t))*L (k-t ) Th(t) 

-E ( k- i )(T(ki) (t)) *L (t) Th (t) 

By induction these formulae imply that Th(k)(t) is symmetric. 
Now, if A is a symmetric operator on a finite dimensional subspace of L2 (e.g., Sh), 

then 

(3.11) IA || = sup 1II11II = S I(A(,)) 

Since the operators in (3.7) and (3.8) are symmetric, (3.7) and (3.8) are equivalent to 

(3.12) I(Thl/2(s)L(k)(t)T,l/2(s), 0,)j < c(, p) 

and 

(3.13) j(Lh/2(s)T4k)(t)Lh/2(s)P, p)j < C(p, p) for all p e Sh. 

From (3.2), 

j(L(hk)(t) , 4)j s C(L(S)4, 4,) for all4 e Sh. 

(3.12) follows with the choice Th4, 2(S) . 

(3.13) is proved by induction on k, starting with k = 0. From (3.12) we know that 

(T/(t) Lh() / t, ) C(O', ). 

Let A = T,l/2(t)Lh(s)T,l72(t). Now 

(3.14) (Ap,pO) < C(O, s ), 
where A is selfadjoint and positive definite. With 4 = A1720 (3.14) becomes 

( +, +) < C(A-'+, + 
Since A-1 = Lh/2(t)Th(S)Lh/2(t), 
(3.15) (4,, 4,) < C(L/ (t)Th(s)h/2(t)4, 4) 

With p - T,l/2( s)L '2(t)4, (3.15) implies that 
(T112(t)Llh/2(S),O Thl/2( 1lh2(S)O) < C(O, 0) 

or 

2(Lh S)Th(t)L112(S),0, O) <C+ 

Now assume (3.13) for k < n. From (3.9) 

n+ - 1n F )T (tLn+ 1-j(t)T4j)(t) T17( n)( t)=- ( f) Th ( t) L(h J h( (t) 
j=O 

so that 

L1-2(S)T(n+ n )(t)L1)2(S) 

= T1/2 ( ) (n + 1-j ( t ) Th1 ( t )L1/2 S )Tj ) t 12 
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Since the operators in parentheses are bounded (independent of h), (3.13) follows 
and the proof of the lemma is completed. 

Note that Eq. (3.13) implies that for any t and s E [0, T] and any integer k > 0 

(3.16) j(T(k)(t)p, 4)j < C(k)(Th(s)d, 4) for all E e Sh. 

(3.16) is analogous to the assumption (3.2) for L(hk)(t) and will be used in several 
estimates. 

We now use energy methods to bound time derivatives of Uh(t) by the derivatives 
at t = 0. 

THEOREM 3.1. If J is a positive integer, then the Jth time derivative u(J) satisfies 

(3.17) Thu (J2) + UJ + f () J) uJ)2) = 0 

andfor J > 0 

( ThUhj+ 1), Uh 
+ 1) ) + || hJl 

(3.18) < C( C u |U(j)(0)|2 + L (ThU(J)(0), U(j)(0))) 
j=O j=l 

Proof. (3.17) is the Jth time derivative of (3.4). We prove (3.18) by induction on J. 
The case J = 0 follows by multiplying (3.4) by u(i) and integrating in the space 
variables. This procedure yields 

I dt (Thus'), UM')) - 2 (TV')uhj) u(s)) + I d JU1 112= 0. 

Integrating from 0 to t gives 

(Thu('), uh(')) + IlUhI|| = (Th u(, uh('))(0) + ||uh ? ( T(V)u('), u (l) )(s) ds 

(3.16) and Gronwall's lemma complete the proof for J = 0. 
Now, we assume (3.18) for J < n - 1. Multiplying (3.17) by Uhl +l) (with J = n in 

(3.17)) and integrating in the space variables gives 

(ThU(n+2), U(n+l)) + (4n) un?+ 1)) 

(3.19) + nj ( )(Tjn- +2) u(n+l)) = 0. 

Using the identities 

(TUn2) U(n+l)) 
i d (TU(n+l), U(n+l)) _T - (T(1)U(n+1)' U(n ) 

h7 h h 2 dt h h h 2 h h h 

U(nU), U(n+ 1) 
I 

=- -|Un)||2 

and 

(Tn-J) U(+2)U (n+1)) - (Lj2T4(n-j)L'j/2T,"2U(j+2), Th 1/2 2u 1)) 
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in (3.19) and integrating from 0 to t gives 

(3.20) 2 (ThUn ), Uh ))(t) - 2 (ThU(nl), U(nl))(0) 

1 21 + 211 ( t(1) ||- 9|U(1n) (n)| 

= (- - n )f (T(1)uhn+) Uhn+ ))(s) ds 

-f2 (ny)f ( L/2 T (n j)Ll/2 Ti /2 U (j + 2) T1/2 U (n)) ds. 

By Lemma 3.1 and (3.16) 

| (T(1)u(n+1), u(n+1)) | C(Th Uhn 1), Un? 1) 

and 

I (LIj2T4n-J)LP/12T,/2U(j+2), T12 U(n+1 )j 

C|| Thl/2 U(J+ 2)1 ||||T11 2 U(n+1) || 

( (Th U(j) U(J 2) ) +(T ThU (n +1), U (n +1) )) 

Using these two inequalities in (3.20) yields 

h(Tun+l), U(n+l))(t) + 11 U(n)( t)12 

(3 .21 ) ( Th U(n+l1), U(n +1) )(0) + 1 U(n ) (o) 112 

n-2 

+?CfJt( Thuh"n1), Uhn 1) ) ds + Cft (Thu(j2) u(j'2)) ds. 
0j=0 

By the induction hypothesis 

n -2 n -l 2 n 

(hU ) Uh )) 11 h |u)(O)|| + Y, (ThUhj)l Uh( ))(?). 
J=O j=0 ]=1 

This estimate and Gronwall's lemma in (3.21) show that for any t E [0, T] 

(Thun+1), u(n+1))(t) + uhn)(t)|| , uh')(0) + | 
j=1 ,=0 

This proves the theorem. 
The next theorem is a bound for time derivatives of u(t) - uh(t) in L2. Let 

e(t) = u(t) - Uh(t) and, for positive integer J, e(J)(t) = u(J)(t) - u(i)(t). Subtract- 
ing Th(uh)tt + Uh = 0 from Tutt + u = 0 gives the following error equation. 

(3.22) The (+ e = ( Th- T) utt- . 

THEOREM 3.2. Let J be a positive integer. The solution e of (3.22) satisfies 

J 1 = 
(3.23) Th e(J +2) + e(j + E (jTh2(J')e (j+2) 9(J) 

= i 
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andfor t e [0, T] andJ> 0 

(The(J+'), e(J+1))(t) + JJe(J)( t)112 

( 3.24) < C ( 
Jk( he,eJ 

), 
J j=O 

O +Elle(y)()l 

+ Sp Elipj)s 
ll+ J? fs II(J)I2)). 

Furthermore, for 2 s< s < r 

J+1 J 2 
T C I (The('), e(J))(O) + E |eJ(0)( 

y=1 j=O 

? h25 ( IIuoIIj+S+ 1 + | )) 

Proof. The proof is similar to the proof of Theorem 3.1. Here e replaces Uh in 
Theorem 3.1 and p replaces 0 on the right-hand side. (3.23) follows by differentiating 
(3.22) J times. With Th(J) = Th(J)P and 7hIX2 = TIX/2P, where P is the L2 orthogonal 
projection onto Sh, the same estimates for Thj that were used in the proof of 
Theorem 3.1 prove that 

(32) (The(j+') e(j+'))(t) + le(j) (t)1122 

< C (The( +'), e(J0e))(O) + e (?)1l 

(3 .26) + C (fto (ThCJ?1), e(J+?1) ) ds +fI tJf2( Theo??+ 2 e(J+2)2d) 

Since 

it follows that 

ft(p(J), e(J+1)) ds - 

(p(J), e(J))(t) -(p(J), e(J))(O) 
f 
t(p(J+l) e(J)) ds 

0 0 

and 

2ft(h(J), e(J+')) ds + 21lp(J)(t)2 + 

(3.27) + J(J)2(0) 2 + + p(J+ 2 ds 

+ f j (J)+12 ds. 
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(3.24) is proved by induction. For J = 0 (3.26) and (3.27) give 

(The('), e(')) + Iell2 < (The(') e())(O) + 

+ t (The('), e(1)) ds + t lel2ds 

Ilp(t)112 + IIP(O) 12 + |e(t)112 + e(O)112 + ftl p(1)12 d 

Subtracting ille(t) 112 from both sides and Gronwall's lemma give (3.24) with J = 0. 
Now we assume (3.24) for J < n - 1 and use (3.27) in (3.26) (with J = n in (3.26) 

and (3.27)) to obtain 

(The(n +) e(n+l)) (t) + Ile(n)(t)112 < ( (The(n+), e(n+l))(O) + Ile(n)(0)12 

11 n-/ n 

+ C E (The(J), e(-1))(0) + E | e (j) (0)| 
J=1 J=O 

(3.28) n-I 2 n ,j2 
+ sup E llp(j)(s)lS +P da 

Os,<t j=O j=1 0 

( t) 112 11 (n) (0) 112 + 1 
2le(n) (t) 

|| + Ile n) ( 2)112 

+ ft p(f+l) 12 ds + cf (Te(n+') e(n + )) ds 1 f ) le(n)l2 ds. 

Subtracting Ile(n)(t) 112 from both sides of (3.28) and using Gronwall's lemma gives 

(The (n +1) e (n +l))) + Ile (n) (t ) 112 

< 
n+- n 2 

< C E (TThe(j), e(J))(0) + , ||e(J)(?) | 
j=l j=O 

( 2 n-1 2d)) + sup E llp(')(S')l + E fS 
p(i)ld( 

O<s'<t j=O j=1 0 

and this is (3.24) with J = n. 
To complete the proof of the theorem we show that (3.25) follows from (3.24). 

This requires estimating the terms 

(3.29) = lP(i)(s')l + f lp()(a)ll do. 
J=O j 

When the terms p(i) appearing in (3.29) are estimated using Leibniz's rule and the 
triangle inequality, the resulting terms which require the most regularity on u are 

(3.30) |(Th - T)u(J+2)(s')l and f |(Th - T)u(J+3)( )u du. 

From (3.1) 

J (T -T) u(J+2)(s')|| < ChsIIU(J+2)(S,)II-1 
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and 

f (Th - T)u(J+3)(a)|| do a< Ch2js i5 u(J+3)(a)||2 do 

and from (2.15) it follows that for 0 < s' < t < , 

iiu (J+2)(')Jlls2 < C(IIUOIIJ+S+i + Iluoi+S) 

f0Slu(J+3)() s-2 do < C(IiUOIIJ+S+1 + ||ut 

All other terms which are produced by using Leibniz's rule in (3.29) are bounded by 
Ch2s(IIuOIIJ+S+? + IIu?IIJ+S)2 and therefore 

Osup t (ip()(,S) 2 + jst p(i) 2 da) < Ch2s(I IUOIIJ+S+l + |iu011J+S)2 
0<5s'<t J=0 J=1? 

This proves (3.25) and completes the proof of the theorem. 
Special initial data will be required so that the terms 

J+1 J 
, (The(J), e(J))(O) + ? ||e(( 

1=1 j=O 

can be bounded by h 2s. The initial data will be chosen so that fully discrete error 
estimates can be proved also (see Section 4). The special initial data is the subject of 
Section 5 and is motivated by work in Sammon [20] and [21]. 

4. Single Step Fully Discrete Approximations. In this section discretization of 
(3.4) in the time variable is analyzed. (3.4) is a system of ordinary differential 
equations and a class of single step methods is applied to these ordinary differential 
equations. For the single step methods the interval [0, T] is divided into N equal 
subintervals of length k and t= nk for n = 0,1,... ,N. For any smooth function 
y(t) the methods (which are called Obrechkoff methods (see Lambert [16])) are 
defined by the formula 

(4.1) Yn+l-Yn = k(-qlyny+, + PlYn) + k2(-q2Yn I + P2Yn') 

where Yinm y,m, and y4m', for m = 0,1,... ,N, approximate y(tm), dy(tm)/dt and 
d 2y(tm)/dt2, respectively, and pi, qi, for i = 1, 2, are given constants. The function 

4[y] defined by 

(4.2) sW[y] = y(t + k) -y(t) + k(qly'(t + k) -p1y'(t)) 

+k2(q2y"(t + k) - P2y"(t)) 

is associated with (4.1). V[y] is the truncation error of the single step methods and 
will be used to define the order of a given method. 

Definition 4.1. A method given by (4.1) is of order v > 0, if Y[t'] = 0 for 
j = 0,1,... ,v, and.V[tp+'] # 0. 

Definition 4.2. The stability region R associated with a method given by (4.1) is 
defined as R = { kA: where A is any complex number and k any positive number 
such that when the method is applied to y' = Ay with y(x0) = yo given and with 
constant step size k, the sequence { yn I 

' , satisfies Iyn l < Iy0 y} 
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For the methods given by (4.1), 1 < v < 4. We will assume that q2 = P2 = 0 in 
(4.1) when i = 1. Also, in this work we will assume that the stability region R 
contains the imaginary axis, i.e., the methods are unconditionally stable. The latter 
assumption implies that the rational function 

r(x) = (1 + pIx + p2x2)/(1 + q1x + q2x2) 

satisfies Irr(+) < 1 for any purely imaginary number A. This implies that 1 + qlx + 
q2x2 has no zeros on the imaginary axis. 

Examples of methods satisfying the above assumptions are given in the following 
table. 

Corresponding Rational 
Approximation to Exponential v q1 q2 Pi P2 

Backward Euler 1 -1 0 0 0 
Crank-Nicolson 2 - 4 0 4 0 
Calahan* 3 -2X 1 - 2A 22X + 
Pade 2 -1 4 0 0 

2 1 1 Pade 3 - 6 3 0 

Pade 4 - I I I I 

*X= (1 + 1/J). 

The definitions given above for order and stability are used in the theory of 
numerical methods for ordinary differential equations (see Lambert [16]). In the case 
of linear second order hyperbolic partial differential equations with time-indepen- 
dent coefficients, these definitions reduce to the ones used by Baker and Bramble [2], 
where the single step methods (4.1) define rational approximations to the exponen- 
tial. 

The following lemma is an analysis of the truncation error (4.2). 

LEMMA 4.1. If the single step method (4.1) has order v and y(t) is a function with 
v + 1 time derivatives then 

a t+h (t + k - s)' y(+y)(s) ds 

(4.3) +qIkft+k (t + k 
- V y(V+1)(s) ds 

(v -i)! 

+q2k2ft+k (t + k -s) y(V+l)(s) ds. 
(v -2)! 

Proof. (4.3) follows from (4.2) by expanding the terms which contain t + k in a 
Taylor series about t and using the fact that Y[t'] = 0 forj = 0,...,v. If v = 1, the 
last term in (4.3) does not appear. 

The two polynomials p(x) = 1 + p1x + p2x2 and q(x) = 1 + qlx + q2X2 are 
associated with the single step methods. Note that p(x)/q(x) is the rational 
approximation to the exponential which was analyzed for linear parabolic partial 
differential equations with time-independent coefficients in Baker, Bramble, and 
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Thomee [3] and for second order linear hyperbolic partial differential equations with 
time-independent coefficients in Baker and Bramble [2]. We denote the degree of 
q(x) and the degree of p (x) by deg q and deg p, respectively. 

In this section in addition to properties (i), (ii), and (iii) (see Section 3) of the 
approximate solution operator Th, if deg q = 2, we will assume the following inverse 
property on Sh: 

(iv) (Lh(A, p)/2 < Ch-11Illp. 
We note that (iv) implies that 

(4.4) ||LhO|| < Ch- 211011 

(4.5) I L(h ) ( S) Th (t ) pjj < C11|+||, 

and 

(4.6) ||Ths(t )L()(S) 0 < C||+||, 

for integer I > 0, for s, t E [0, T], and for all p E Sh. See Sammon [20] and [21] and 
Section 7 for more details on these estimates. 

(3.4) can be written as a first order system of ordinary differential equations so 
that the single step methods (4.1) can be used to discretize the ordinary differential 
equations. 

With 

U Uh) and Yh(Lh I) Uh ( (Uh )t ) (Lh ? 

(3.4) becomes 

(4.7) (Uh) 2hUh, Ot< tT, Uh(0) (s V) ' 

We now think of Yk in (4.1) as approximating Uh(tk) for k - 0,...,N, and y/ 
approximating U1()(tk), etc. (4.1) requires the second time derivative of Uh which is 
obtained by differentiating (4.7), 

(4.8) ~( Uh ) t = hUh (Uh ) tt = (h + Yh ) ) Uh 

The following notation will be used so that the equation which is derived from 
formally substituting (4.8) into (4.1) can be written in a convenient form. 

Forj= 0,...,N, 

QJ I + q,kYh(tj) + q2k2'h(), Q + q2 

PJ-I + p1kTh(tJ) +P2k2Yh2(tj) and -P PJ + P2k2Yh(1) t) 

For integer i > 0, 
L( -L(hl) (ty ), TJ (I )Th(l) ( tj), 

yjjl ) ((tj) and Yi) sh1)((tI). 

Note that ?7h is a linear operator from Sh X Sh to Sh x Sh and 
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The fully discrete approximation to (1.1) is defined as {W')' 0 C Sh x Sh which 
satisfies 

(4.9) On+lW = PnW v 

where W? is given in Sh X Sh. We will show that Qn is invertible, if k is small 
enough, so that Wn for n > 1 is well-defined. We will also derive error estimates for 

wn _ ( Uh(th) 

-(Uh)t(tnl)] 

These error estimates will be used together with the semidiscrete error estimates and 
the triangle inequality to estimate Ilu(tn) - Wlnll, where Wln E Sh is the first compo- 
nent of Wn. This entire analysis will be done in a special inner product on Sh X Sh 
which will be denoted by 

(4.10) ((DI, 0p))n =(1 41) + (Th(tn)'2, 4'2) 

where 

4 ( 0)2 and - 2 
can be complex-valued functions and 4l and 42 denote the complex conjugate of 4l 
and 42, respectively. The corresponding norm is denoted by 

(4.11) III?IIIn = ((4D, 0))1/2 for n - 0,1,. ..,N. 

Note that from (3.16) it follows that the norms III III, and III Illn are equivalent for 
any integers m and n between 0 and N. 

The following lemma proves that Qn is invertible. 

LEMMA 4.2. For any nonzero complex number a andfor all 4D e Sh X Sh 

(4.12) IRe Il 
11n < (I + akPn )OIIDn 

and 

(4.13) IRe al IIIkInllIn < III (I + akWn)OIIIn9 
where Re a denotes the realpart of a. If q(x) = 1 + ax, then 

(4.14) Re al 1110111n < IllQnolIln 
and 

(4.15) IRe al Ilk9rnIIl < III QnllnK 
and if q(x) = (1 + alx)(1 + a2x), then 

(4.16) IRe a:I IRe a2l 1ID < IIIQn4DjIIn IallI1a21 

(4.17) IRe a, IilR, 
IaI R 21 jjjk- n,Djjn 

- II jjQn~DjIIIn, 
and 

(4.18) |Re all |Re a21 Ik2Sn26DIQ < IjjQnDIjn. 
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Proof. (4.14)-(4.17) and (4.18) are applications of (4.12) and (4.13). It suffices to 
prove (4.12) and (4.13). 

Let {} I1 and { N,j} 1 be the orthonormal eigenfunctions and eigenvalues of 
Ln =-0(- o) has orthonormal eigenfunctions 

L 0 ~ ?1 1 o f 

(which are a complete set) and eigenvalues + iv, for j= 1,... ,m. With 4 = 

Em I Ei= -m ji4 I 

(I + ak9n)F = I Cj(1 + ak(sgn j)ivKIiI)(41, 
j=-m 

where sgn j is the sign of j. We have 

(4.19) III(I + akYn)4l = nCj 2 | + ak(sgn i)i4"'I 2 

j=-m 

and 

(4.20) III (I + akYn)(I = E Ikiv'XuIl2 Cjl2 + ak(sgn j) iviji12 
1=-rn kivlKXijiI 

Let x = k j sgn j. Since the functions fi(x) = 11 + aix12 and f2(x) = 

1 + aix12/x2 satisfyf1(x) > IRe a12/ja12 andf2(x) > IRe al2 for all real x, it follows 
from (4.19) and (4.20) that 

III(I + ak>n) IIn> E j2R Ie a 
j.=-rn Jaj 

and 

(D12 m jI2 IC 12 
11(I + akY,2)tj n~ I kiVKIjI~c2 IRe a12 

j=--m 

These estimates give (4.12) and (4.13) and complete the proof of the lemma. 
The next lemma proves that if k is small enough then Qn is invertible (when q(x) 

is quadratic). 

LEMMA 4.3. If k is sufficiently small and q2 / 0, then for all ( E Sh X Sh, 

(4.21) C111jQQnI111n < 111jjIQ>Iln < C2111jQnj111n 

where C1 and C2 are independent of the step lengths h and k. 

Proof. 

(4.22) Iii(On - Qn)(IIIn = ||q2k2yn(1)(D|||n. 
It is easy to see that 

k(L(1)Tn2) 

and 

Ill"(,)_112 1) 142 = 1| T1/2L1) T1/2Tl/2112, 
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From this identity and Lemma 3.1, 

n c(i 1/2#2, 2 #2) = C(Tn#2, #2)) 

Therefore, kjjjYn(1)9;Al11n < CkIIL-. Substituting 4P = $?n4, gives kjjjYn(4111 n 
CkLjYn4PIIj. From this estimate, (4.22) and Lemma 4.2 (from the stability assump- 
tion q(x) has no roots on the imaginary axis) we have 

111 (n-Qn) D111n < CkIjJQn(DIIIn. 

The triangle inequality gives 

(1 - Ck) II QnDIIln < III QnDI11n < (1 + Ck) II QnDI'11n. 
This estimate gives (4.21) for sufficiently small k and completes the proof. 

The fully discrete scheme defined by (4.9) is well-defined since Qn +I and QOn+ 1 are 
invertible. We now analyze the error IlUh(tn) - WnIlln by studying the following 
error equation. Define En = Uh(tn) - Wn for n = 0, 1, . . , N. By manipulation of 
(4.9) we have 

Qn+IE n+1= Pn+1En + (Pn -Pn+En 

(4.23) + (Pn-Pn)En E+(Qn+l -1 n+- n+1 

+0Qn+lUh(tn+l) - PnUh(tn). 

The next four lemmas bound terms in (4.23). 

LEMMA 4.4. 

(4.24) IIjPn+jEn 11n+1 < (1 + Ck)||lQnE nlln 

Proof. Pn +1 En = Q-n+lpn+ lQn+ E n and, with Qn+ E n = yn C/D 

_~~~ lp ~~ ~((sgn j) irx/Kii)2 
(4.25) n+141112 = |CJ__ 

where { Dj% - m are the eigenfunctions and {(sgn j)/iKX IjI - are the eigenvalues 
of ?n+9 which were introduced in the proof of Lemma 4.2. From the stability 
assumption, it follows that if Re I = 0, then Ip(A)/q(A)I < 1. Hence, the stability 
assumption and (4.25) imply that IIIQ-1Pn+1#IIIn+1 < IIIII2+1. Substituting = 

Qn+IEn gives 

(4.26) lllPn+1Enn+11 + 1 nlll2 

(4.24) follows from (4.26) and the following lemma. 

LEMMA 4.5. For any 4I E Sh X Sh, 

(4.27) IJJk'IJJn+1 < (1 + Ck)JJJ'IJJn" 

(4.28) |||(Pn -Pn+1)E ||| n+1 <1 CklllQnEnIlln 

and 

(4.29) -ii( 
- Qn +1)E in +_1 < Ck|||QnE nlll. 



SEMIDISCRETE AND SINGLE STEP FULLY DISCRETE APPROXIMATIONS 401 

Proof. To prove (4.27) note that since 

nlkIlIJ|?i = ((01,01) +(Tn+10,2)) and JJI4JJJ,n= ((=k1' 0) + (TnO2, S2)), 

nJ - = ((Tn+ - Tn)02 2) 

t,,+l (L/2Tl)(S)Ly2;1/2p2, T1/2p) ds.- 
,tf 

So by Lemma 3.1, 

II n+i <IIJIIIIn + Ck(Tn12, q2) < (1 + Ck)JjJIjjjn 

and 

IIk'JIIn+1 < (1 + Ck)1"2111IjjjIn < (1 + Ck/2)JI1jJJ1n. 

This proves (4.27). To prove (4.28) and (4.29) we first show that 

(4.30) |||k(Y2n+1 -n)4llln+l <, CkJJJQn(D111n 

and 

(4.31) |||k~2(y2 n+-yn2)(D>IIIn+ 1 < Cklll Qn(D111n- 

Note that 

Yn+ 
- = f|I ?'lt)( s) ds and 2n2+ = I n+1 ( hI(s) L1)(s) ds. 

Therefore, 

(4 32) 111(y+ -y7 )(D111n+1 <, | 11147h)(S)g;2n n(||1n+ 1ds 

and 

|||(3 
tn 7n)+1nl h ( )2 j< 2,0 ds 

Since 

||| h (1)(s) t4iI 1 = 'TnL+/2 1<)(s) 
n42II < CjjT1/2I| 

and 

-01n+~~ L('|)(s +Tnl+211 2l n 21 

it follows that 

and 
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These two inequalities used together with (4.27) and Lemma 4.2 imply (4.30) and 
(4.31). Substitution of 1 = En in (4.30) and (4.31) and the triangle inequality give 
(4.28) and (4.29). 

LEMMA 4.6. 

(4.34) 111( Pn-Pn)En|||n+ 1 - Ckl QnEn|Iln 
and 

(4.35) III(Qn+1 n+1)En+s1||n+1 < Ckj||Qn1En+E ln1 

Proof. The proof is the same as the one given in Lemma 4.3. If p(x) is quadratic, 
then 

111 ( Pn-Pn ) Elln k |p2kYn(1) Enl+ n _ c||7n(lgnEnl 

< CklllQnEnll||n, 

where we have used (4.27) and the proof of Lemma 4.3. (4.35) follows from almost 
exactly the same argument. 

LEMMA 4.7. The "truncation error" 

(4.36) IIIQln+AlUh(tn+0l ) -PnUh(tn )II|n+l1 < Ckv tn+ I Uh( +1) (S) i n+ ds- 

Proof. By definition 

Qn+lUh(tn+l) - PnUh(tn) 

- Uh(tn+l) + q,kUh()(tn+l) + q2k Uh )(tn+J) 

-Uh (tn) - pjkUh(1 (tn) - p2k 
h 

)(tn) 

The inequality (4.36) follows from this equality and Lemma 4.1. 
The next theorem uses Lemmas 4.4, 4.5, 4.6 and 4.7 to estimate the terms 

appearing in the error equation (4.23). The fully discrete error estimate is the result. 

THEOREM 4.1. The error En = Uh(tn) - Wn satisfies the estimate 

11Q E n+ 11III2 

(4.37) < (1 + Ck )QnE + Ck2v-1 (tn+1 V+l) (s)llnlds ) 

forn=0,1,...,N-1,and 

(4.38) IIIQNEAT|N I< CIIQOEOIIIO + CkV U11Uh(j)(O)II0O 
j=0 

Proof. To prove (4.37) we take the ((, -))n+1 inner product of (4.23) with 
Qn+IEn+1 and use Lemmas 4.4, 4.5, 4.6, and 4.7 to estimate the terms appearing 
after the equality in (4.23). These terms are estimated as follows: 

(1) 

((Pn+1E n 
Qn+IEn+1))n+l s<|jPn+1E nlln+llllQn+IE IIIn+1 

< IIIP1n+ E nj12 +j1 + n+1 
2 
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Using Lemma 4.4, it follows that 

(4.39) ((Pn?1En, Q?En?1) G+ Cn)jj I2 nj1 + (4 39) (( P EnQ En +1 ) )n <2 (1 + Ck ) |||Qn E ||n + 
I 

| ||Qn +j1E ||n+1 

(2) 

(((P -Pn+l)En, Qn+,En+1))n+l ;S jj(Pn - Pn+,)En[in+llQn+lEn IIn+ 

Using (4.28) in Lemma 4.5 gives 

(((Pn- Pn+l)En Qn+lEnl ))n+l < Ck(IIIQnE IlInIllQn+1E 1IIn+E 
(4.40) 21kQ1E12 

Ck klll QnEn Illn + ||| Qn+ jEn+ n+ 1 

(3) From Lemma (4.6) 

(4.41) (((Pa - Pn )E Qn1En1 ?))n+l < Ck(|||QE + E|| n n+ ?1 n+112 

and 

(4.42) (((Qn+l - n+E Q+1En+1))n+1 < CkjjQn+,En?1j1n+1. 

(4) From Lemma (4.7) 

((n+lh(tn+l) - PnUh(tn) , Qn+E ))n+l 

(4.43) < C( k 
v 

|n+ III Uh(V + l) ( s) Il n +1 ds )|||Qn jE+ 11E1Iln +1 

< -1 V+1)~ ~ ~ 
CJJQ+i~1JJ~1 

Ck2( jn+ III Uh( )(s)IIn+1 ds) + CklllQn+,E 1111n+1 

Using the estimates (4.39)-(4.42) and (4.43), gives 

t IjQn+?1E +1jjn+1 2 2(1 + Ck)OIIQnnEnjjj + -1IlQn+,E 

+CjkIIIQnE IIIn + C2k|||Qn+lEn+l ln+ 

+ C3k2^-l(l n+1 
IIIUh(,v+1) (S)|1|n+1ds) 

Subtracting the terms containing III Qn + 1E n?+1 II 2+1 on the right-hand side gives 

- 2 (l +(ni +ncl)k)2IIQcEnIII ( 2 C2k )ll Qn+ E lln + 1 <( 2 +( 2 + C, k) lll Qn E n l 

+C3k2v1(tn?JU~?)sJn+1 
2 

+ C3k2v-l( I I |Uh(,v+1) (S)|11n+1 ds) 

If k is small enough, dividing by (1 - C2k) and bounding the constants produces 
(4.37). 
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To prove (4.38), we start with (4.37). From Theorem 3.1 it follows that 

(ThU(P+2), U(v+2))(S) + ||U( +,)(S)|2 

v+1 2 v+2 

< C E |1Uhj)(0) + E (ThUh) Uhj) )(?) 

j=0 j=l 

P+1 2 

< C E IIIUV) (0) O 
j=0 

It follows that 
ft1 v-I-i~~~~~~2 P+ 

(II2 

III ||U'P+')(S)Illn+lds Ck 2 E ||UV()( )0 
j=0 

So (4.37) becomes 

2 2 C 
+1 2 

IIIQn+1E +llln+s < (1 + Ck)IIIQnEnn + Ck2P+1 E IIIUh(') 
j=0 

Since 1 + Ck < eCk, the above estimate gives 

112 2 +1 ( II2 
|||Qn+1En+1 n+1 - eCklllQnEnllln < Ck2v+1 U IIIUVJ)(O) 

j=0 

Multiplying by e-Ctn+ lyields 

e -Ctnp+l En1 _ e-CtnhEQnEnIII2 < C(ke-Ctn+1)(k2v) E 1u,)(O) 2 

j=0 

Summing from n = 0 to N - 1 gives 

112 
p+1 2 

e-CtN IIIQNEN N - IIQOEOIII < Ck 2 E I I2(J)(?)IIIO 
j=o 

or 

IIIQNE|||N < ~ e N|||Q0E0|| + C(eCtN)(k2v) U(j 2 
j=0 

Taking the square root and defining new constants produces (4.38). This completes 
the proof of the theorem. 

Theorem 4.1 and Lemma 4.2 imply that 

IIIENIIIN < CIII QOE0||| + Ck E III UVi) (0)|o . 

j=o 

Since II|uh ( tN ) - W1NI I <||N I E IIIE N it follows that 
(4.44) IUh(N)W tCN0E00+Ck(lv11IuN( IJ+1 

(4.44) 1||Uh(tN) - WjNJJ < C|||QOE?|||o + Ckp E 11JUh(i)(O)IIJo. 
j=0 

(4.44) and Theorem 3.2 (U(t) QUO()) imply that 

(4.45) u(tN) -WN 1 <cNlIU(o) - Uh(O)II|o + hs(IIuoIIs+j + Ilu?lls) 

(4.45) ,+l 

+III QO (Uh (O) - W) |ll0 + kp III Uh(j) (0) Illo 
j=0 
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for 2 < s < r. It remains to be shown that three of the four terms on the right-hand 
side of (4.45) can be bounded in an appropriate way so that (4.45) is an optimal 
error estimate. Optimal is defined as the type of estimate derived in Baker and 
Bramble [2], where the case of time-independent coefficients was considered. Bound- 
ing the terms in (4.45) requires special choices for Uh(0) and W? so that (4.45) will 
be an optimal estimate. The construction of functions which we will use for Uh(0) 
and W? is the subject of the next section. 

5. Construction of Initial Data Uh(O). In this section operators on L2 X L2 are 
constructed out of ?(i) and y(i) and operators on Sh X Sh out of 2'(J) and .h5*). 

These operators are analogous to operators used for parabolic equations with 
time-dependent coefficients by Sammon in [20] and [21]. They will be used to define 
special initial data for the semidiscrete problem as in the parabolic case. In Section 
6, we will show that with a special choice for W? the fully discrete scheme defined 
by (4.9) is not changed by the special initial data for the semidiscrete problem. 
Specifically, the fully discrete scheme (4.9) and W? do not depend on the parameter 
a which will be introduced below in order to construct the operators mentioned 
above. 

With U (Q), the hyperbolic problem (1.1) can be written as the first order 
system 

(5.1) ut =YU, U(0)= (u?) 

where F= (0L 0). 5 is an unbounded operator on L2 X L2 with domain D.= 
DL X L2. Also, with U e-atU, it follows that 

Ut = aeatu + eatUt 
and, using (5.1), that 

(5.2) U, = (s'- aI)U, U(0) = U(O) = (u?) 

Differentiation of (5.2) m times gives 
(5.3) U Am+IU 
whereA0-I, for 0j < m, 

J/. 

(5.4) Ai+, 
= 

i A 
z=0 

and S(J-') is the (j - i) time derivative of S- 2- l. Am+l is an unbounded 
operator with domain D(Am+) = {V e L2 X L2 such that A,Ve D. for j= 
0,. ... ,m} 

For 0 s j K m + 1 the jth time derivative of Y= (.T)-1 is denoted by Y(J). We 
will show that if a is large enough then Am+I is invertible and that Am+I has 
properties which are similar to the properties of (2)m+ . (Note that if the coeffi- 
cients of L are independent of t then Am+i = (,)m+l.) 

THEOREM 5.1. Let E1 = 
5 E2 = ?(I - Y(1)), andfor m > 2 

(5.5) Em = (I-M ()_E(m )E(m .) . E 
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(where El[' is the inverse of El). El is an unbounded operator on L2 x L2 with domain 

Dy. The following conditions are satisfied for integers 1 > 0 and m > 1: 
(1) El, ... .Em: (H'+2 n Hol) X H'+' - H'+ X H' exist and are bounded. 
(2) Ej1,. . . Em-: H's x H' -(Hl'2 n HO1) X H'+1 exist and are bounded. 
(3)Am Em" ElonD(Am). 

The next result is an analogue of Theorem 5.1 for operators on Sh X Sh which 
approximate the operators E1j,... ,E,1 and A- . Analogous to (5.3), the derivatives 
of 64'l = 'hUh can be written 

(5.6) A 

whereAOh-- I, for 0 < j <m, 

= I 

and 2;J(i-') is the (j - i) time derivative of Y'h h - aL. For 1 j < m + 1 the 
jth time derivative of h - (h)-l is denoted byg 

THEOREM 5.2. For a sufficiently large the operators Elh = Yh E2h = Zh(I - 

and, for m > 2, 

(5.7) Em+l,h =F1h(I - M'- . Ernh) 

are invertible on Sh X Sh; for m > 1 and 2 < s < r, 

(5.8) Am h=Emh* Elh on Sh X Sh 

andforF= (f) E H'-2 x H'-2 

(5.*9) |||j(t1 E -EIIh ) FIIIo < C(a)hs( Ifills.-2 + IIf2IIs-2)a 
where E'1h are extended to L2 X L2 by the formula E'1 - E-1 (Po ) (where P is the m,h E~~~~~~~m,h =-m,hO0P 
L2 orthogonal projection onto Sh). 

Remark. The seminorm 1110 Illo used in (5.9) can be replaced by the seminorm 

(11112 + (Th (tp ) 2, 2))'12 for (P') E L2 x L2 

and for any t E [0, T] since these seminorms are equivalent (see (3.16)). We use 
111*o since the operators E,...,Em and Elh,. h ,Em h will only be used at t = 0 to 

construct the special initial data for the semidiscrete problem. 
The proofs of Theorems 5.1 and 5.2 are in Section 8 which appears in the 

supplements section of this issue. 

6. L2 Error Estimates. In this section we combine the error estimates of Section 3 
and Section 4 using a special choice for Uh(O) which is based on the operators 
constructed in Section 5. In Sections 2, 3, and 4 the following three equations were 
defined and error estimates were derived which did not include estimates for the 
initial data. 

The hyperbolic equation: 
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The semidiscrete equation: 

(6.2) (Uh)(=ZhUh t E [O, T], (Uh)(0) =A-Iih(O)Am(O)(U0) 

The fully discrete equation: 

Qn+1Wn+ PnW , n = O,l...,5N- 1, 

(6.3) wo 1'~~( 
1~O qk($62 (0) l)() U 

W? = Q0 1 0P) ( I + q1kY(O) + q2k? ( 5 ? I())(U 

where m is an integer greater than or equal to v + 1 and P is the L2 orthogonal 
projection onto Sh. 

The functions u; defined by 

U0 = u 
05 

0j-2-2-k, 
u, = u = - 

5 k L(i k)(O)Uk forj >2, 
k = k 

were introduced in Section 2 where assumptions on uj implied existence of time 
derivatives of u. These assumptions were that uj E DL = H2 n Ho'. The three 
lemmas in this section contain estimates for the error in the initial data for the 
semidiscrete equation and for the fully discrete equation, as well as a bound for the 
time derivatives of the solution of the semidiscrete equation. The following lemma 
contains the error estimate for the initial data for the semidiscrete equation. 

LEMMA 6.1. If uj I DL for j = O,. ..,m + s - 3 and um+s-2 E Ho, then for 2 < 
s < randj= 0,...,m - 1, 

(6.4) |jju(')(0) - U,D(0)(o)j0 <- Chs(I|UOI|m+s-l + IIUtIIm+s-2). 

Proof. Since U = e-tU and Uh = e-tUh, U(O) = U(0), Uh(O) = Uh(O) and 

U () (O) - u(i) (O) = j (-a)j( t (0) 

Therefore, 

|||u(i) (0) - 
Uh(i)(o)j|0ll 

c C j1 U(') (O) - 
c(h')(?)jIl0l /=0 

Using (5.3), 

U) (0)= A(O) U (O) A(O) m (O)Am(O) ( u?) 

and from (5.6) and (6.2) 

Jh (?0) x ,h(o) Uh(O) = A,h(O)Amh(O) Am(O)( o ) 

Theorems 5.1 and 5.2 imply that 

(6.5) U(l'(0) - Th(')(o) - ( 0i(o)i'm(o) A/h(O)Arnh(O))Am(O)K 

=-(LA-+ .. -aE El+l,h Em h)(O)Am(O)( 0). 
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Since 
... E- E ... Em,h 

m 

- .El+lh* Elh(El - Ej+j * Em 
i=l+l 

and 

Am(O)(u0) - L> )(?) = 1=0 

it follows from Theorems 5.1 and 5.2 that 

m uo~~~~ 

IIU(')(O) - U4'i)(O)lI < ChS E (ttuitts-2 + ttui?ittS-2). 
1=0 

(6.4) follows from this inequality because from (2.15) 
ni 

E (ffUflls-2 + ttUl+1i?s-2) < C(tlUOttm+s-1 + IIUt Im+s-2) 
1=0 

The next lemma contains a bound for the time derivatives at t = 0 of the solution of 
the semidiscrete equation. 

LEMMA 6.2. If uJ E DL forj = O,. . . ,m-1 and um E Ho', then forj =O,. . . ,m, 

(6.6) IIIUh$J)(O)II|O < C(11UO11m+1 + IUtOIj 
Proof. Since Uh = e'Uh, 

uNJ)(o) aI- ( I () ')(0) 

Also, from (5.6) and (6.2) 

fh$') (o) =,h (() )Uh (O) = Ah (O) Am h (O)Am (O)(O) 

Using Theorem 5.2 

Uh(O) (t 'I+ 1, h ... 
h ) (0) Am(?)( U) 

(8.36) implies that 

(O)(0) < C im(A)(U) 0O 

and (6.6) follows from this estimate. 
The following lemma is the error estimate for the initial data for the fully discrete 

equation. 

LEMMA 6.3. If uJEDL forj =O,...,m+s-3 and um+s2EHoi then for 2 < 
s < r, 

(6.7) IO(Uh(O) - W 1110 < Chs(IlUO11m+s-1 + ||Ut |lm+s-2) 
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Proof. By definition 

QOw ( p )(I + qjkY(0) + q2k2( 2 (0)+( 

and 

QoUh(O) = (I + qlk-1o + q2 + $Ofl)))Uh(O) 
Hence 

O ( W? - Uh(0)) 

= ( O )(I+ q1k(Z() -aI)+q2k2 ((2(0) - aI)2 + ()(0))) (Uo) 

- (I + q lk( k-(a) + - aI) + 2c(1)))Uh (0) 

-(P O)(-qi'ka'? q2k2 (-2a(0) + _))(uo) 

I + qlk(T+ q2k2(-2a-I 0 + a21))Uh(0) 

=(~ o )((l + q1ka + q2k2a2)I + q1k&(O) 

+ 
q2k2()a2(O) 

+ o 

1+ qka + q2k2a2)I+ q0ko0 + q2k2(1'] ?&2j1)))uh(o) 

-(0 O )(-2q2k2a(Z(o) - aI))(u?) +(-2q2k2a(i0 - aI))Uh(0) 

= (- l)((I + q2ko + q2k2o2)I +(q k + 2q2k2a)o6(O) 

+ q2k2( 2() 

- ((i + q lka + q2k2a2)I + (qak + 2q2k2a)10 + q+ y)))uh(o). 

Therefore, 

Qo( Uh(O)) =(1 + q1ka + q2k2a2)[( OP) ( u?) -Uh(O)] 

+ qk+ 2q2k2a)[(~ 0 )&(o)( u?)-YUh(O)] 

Since Uh(O) = (4(0)2 

QO ( W? - U (0)) 

-(( + )[(l + q2k a + qlk2a2)(U(O) - U h(O)) 

+ (q(k + 2q2k2a)(U(1)(O) - +j(l)(O)) +q2k2(a(2)(o) - 
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From (6.5) in the proof of Lemma 6.1 it follows that 

IIQ0(wo - Uh(O))|||0 < Chs(||UOjjm+s-i + |Ut 0Im+s-2) 

This completes the proof of the lemma. 
The next theorem combines the estimates in Lemmas 6.1, 6.2 and 6.3 with the 

semidiscrete error estimates (Theorem 3.2) and the fully discrete error estimate 
(Theorem 4.1). 

THEOREM 6.1. Let m be an integer such that m > v + 1 and T = Nk. If ui E DL for 
i= 0,.. .,m + s - 3andum+s-2 E Ho thenfor2 < s < randj =O,1,...,m - 2, 

(6.8) III U(J)(tN) - Uh(j)(tN)H||N < Chs(||UOm?sM-1 + ||Ut |lm+s-2), 

(6.9) IIIQN(Uh(tN) - WN) IIIN < C(hs + kV)(||UOjjm+s-i + 
||Ut Im+s-2)1 

(6.10) III Uh(tN) - WN IIN < C(hs + kV)(||UOjjm+s-i + ||Ut Im+s-2)1 

and 

(6.11) ||U(tN) - W1I + UT,X(ut(tN) - j2N) 

< C(hs + kV)(01uOlm+s-1 + ||Ut Im+s-2) 

Proof. (6.8) follows from (3.25) in Theorem 3.2 (J = m - 2) and Lemma 6.1. (6.9) 
follows from (4.38) in Theorem 4.1 and Lemmas 6.2 and 6.3. (6.10) follows from 
(6.9) and (4.16) (or (4.14) if q2 = 0) in Lemma 4.2. (6.8), (6.10) and the triangle 
inequality imply (6.11). This completes the proof. 

(6.11) shows that the error u(tN) - W1N is optimal in L2. WI, n = 0, 1,... ,N, is 
the first component of the solution Wn E Sh X Sh of (6.3). 

7. Examples of the Approximate Solution Operator Th for the Dirichlet Problem. 
These examples and more references are given in Bramble, Schatz, Thomee and 
Wahlbin [6]. 

(1) The "Standard " Galerkin Method. This is the example mentioned in Section 3. 
Here Sh C Ho' and is assumed to satisfy the approximation property 

inf {|w - xl + hlw - XII} < Chsllwlls for 1 < s < r. 
x E SI, 

The operators Th: L2 -> Sh are defined by 

a(Thf, X) = (f, X) forX E Sh 

(2) Two Methods of Nitsche. The methods use the bilinear form 

Bh(<P,# ) = a(P,42)-K4, )- (a h v A)) 

where K ,) denotes the inner product in L2(aR), aj/a the conormal derivative on 
au and /3 a positive constant. The functions in Sh, are not required to vanish on au. 
If Sh c H1 with the restrictions to au in H1(aR), and if Sh satisfies 

inf {|w - X + hllw - XI + h172w -X||L2(aQ) + h3/21 -X|H'(aS2)} S ChslIWIls, 
x 2 Ss r 

2 < s < r, 
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and an "inverse" assumption 

Ch -1/2 X1HX for x E She 
aP L2(aa2) 

then it can be shown that Bh is positive definite on Sh for /3 sufficiently large. The 
operators Th: L2 -> Sh are defined by 

Bh(Thf, X) = (fI x) forX E Sh. 

If in addition to the above assumptions, 

IIXIIL(d) , Co h / ||1for X E- Sh , 

where CO is sufficiently small, then Bh is positive definite on Sh even with ,B = 0. 
(3) The Lagrange Multiplier Method of Babuska. Let { $171 } be a family of 

subspaces of H1 which satisfies 

inf {||w - xl| + h||w - XlII) < ChsIIwIIS for 1 < s < r, 

and let { Yh'} be a family of subspaces of H1(a S) such that 

inf { h-1/211w' - X1||H-1/2(a2) + h1/2|w' - X'ilH1/2(a02)} X E,9h 

< Chsw'j1Hs(a2) for 2 < s < r - 3. 

Assume also the inverse property 

IIX'l H1(a &) -< Ch I'IX IL2(a S) for X' E Yh'. 

With 8 sufficiently small the family { Sh } is defined by 

Sh {X E=7h,(X,X')= Ofor all x' E=Ih'). 

It can be shown that the bilinear form a(-, ) is positive definite on S,. Th: L2 - Sh 

is defined by 

a(Th, f, X) = (f, X) for X E Sh. 

These methods satisfy the following three properties: 
(i) Th is selfadjoint, positive semidefinite on L2, and positive definite on Sh. 

(ii) If j is an integer which is greater than or equal to 0, then there exists a 
constant C(j) such that 

|| (T(J) - Th(j))f || < C(j)hsllf Ils-2 for 2 < s < r. 

(iii) Define Lh to be TW1 on Sh. If j is a nonnegative integer, then there exists a 
constant C(j) which is independent of h such that for s, t E [0, T] 

|(L(j)(t)0, p)| < C(j)(Lh(s)4, p) for all p E Sh. 

The proof of (i) is given in Section 8 of Bramble, Schatz, Thomee and Wahlbin [6]. 
The proof of property (ii) is in Theorem 5.1 of Sammon [21]. 

The following lemma contains a proof of (ii) for the "standard" Galerkin method. 

LEMMA 7.1. For f E L2, let Th f be defined by the "standard " Galerkin method, i.e., 
Sh E Ho and 

(7.1) a(Thf, X) = (f, X) forall X E Sh. 
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Then, for 2 < s < r, 

(7.2) ||(T(J) - Th())f 11 < C(j)hsl 1|f js-2, 

and 

(7.3) ||(T(J) - Thij))f II,< C(j)hsIlf Ils-2- 

Proof. The proof is by induction onj. The estimates III(T - Th)f IIII < Chs- lif ls-2 
and II(T - Th)fII < Chsllfls-2 are well known. Let e = (Th - T)f and e(j)= 

(Th(J) - T(J))f. It follows from (7.1) that a(e, X) = 0 for all x E Sh. Therefore, 

E ()a(m-J)(e(j), X) = O for allX E Sh. 

Since 

jJe(m)jjl I Ca(e(m), e(m)) 

- C a(e(m), e(m) - x) 

+ E () [amJ (e() e(m)- x) - a(mi)(e(j) e 

1 (m)jj2 + C( flfl e('-jj' + X2e(m)-X112) 

for any X E Sh, it follows by induction and the approximation property that 

I|e(m)JI, < C(m)h s- lilf lis-2- 

This is (7.2). To prove (7.3) note that for any p E L2 and X E Sh, 

(e(m) p) - (e(m), LTP) = a(e(m), TO) 

= f ( $)a(m ')(e(W), To - X) - E (7)(e(j), L(m-)T) 
J=O = 

ni m-1 
< C E |Ie(j)IIj inf J|T4 - XiI + C E jje(J)jj jITO112- 

(7.3) follows by induction using (7.2) and the approximation property. 
The next lemma applies to any method for which Th is symmetric and which 

satisfies (ii) and an inverse property. 

LEMMA 7.2. If Th is symmetric and satisfies (ii) and the inverse property 
(iV) (Lap, ()1/2 < Cl-11pll for all p E Sh, 

then for s, t E [0, T] and integers 1, m > 0, 

(7.4) ||L(hl)(s)Th(m)( t)Ojj < C(1, m)JI|011 

and 

(7.5) C m| Thnl)e(t)Lm)(s)no < C(1, m)J Ih.l, 

where C(l m ) is indenendent of h. 
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Proof. It follows from (iv) that IILh 41IIs< ChI-211411 for all 4 Ee Sh. Since 

Lh(s)T(m)(t) = Lh(S)T(m)(t) - PL(s)T(m)(t) + PL(s)T(m)(t) 

= Lh(s)P(T(m)(t) - T(m)(t)) + Lh(s)P(T(s) - Th(s))L(s)T(m)(t) 

+ PL(s) T(m) ( t), 
property (ii) (with s = 2), property (iv) and the triangle inequality imply that 

(7.6) ||Lh (S) T(m) (t) OPl < C|III for all p E Sj, 
This is (7.4) with I = 0. 

Also, since 

________t_Lh(S)0 _ = supLh(S)Th (00 

42 -=L2 E 4'-42L2 f4f 
it follows from (7.6) that 

(7.7) |Th, (t)Lh(s)>|| < C||+|| for ali cE Sh. 

This is (7.5) with m = 0. The remaining parts of the lemma are proved using (7.6) 
and (7.7). For example, since 

L(1)(s)Th(t) = -(Lh(s)Th()(s))(Lh(s)Th(t)) 

and 

L(m) (S) Th() = mL ( L)(Lm-J(s)Th(t))(Lh(t)ThI )(S))(Lh(S)Th(t))I 
j=1 

it follows by induction on m (using (7.6) and (7.7)) that 

(7.8) ||L(m)(s)Th(t)44| < C||+|| for all 0 E Sh. 

Similarly, the estimate 

(7.9) |Th(t)L(m)(s)+|| < C11|+|| for all@ E Sh, 

can be proved. Finally, the identities 

L(h)(s)T(m)(t) = (L(4)(s)Th(t))(Lh(t)T4m)(t)) 

and 

T(/)(t)L(m)(s) = (Th(/)(t)Lh(s))(Th(s)L(m)(s)) 

used with (7.6), (7.7), (7.8) and (7.9) complete the proof of the lemma. 
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