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Semidiscrete and Single Step Fully Discrete
Approximations for Second Order Hyperbolic
Equations With Time-Dependent Coefficients

By Laurence A. Bales

Abstract. L? norm error estimates are proved for finite element approximations to the
solutions of initial boundary value problems for second order hyperbolic partial differential
equations with time-dependent coefficients. Optimal order rates of convergence are shown for
semidiscrete and single step fully discrete schemes using specially constructed initial data. The
initial data are designed so that the data used for the fully discrete equation is reasonable to
compute and so that the optimal order estimates can be proved.

1. Introduction. In this paper we shall consider the approximate solution of the
initial boundary value problem

N
d du .
u,=-L(t)u= %:_ W(ajk(xﬁ)a—xk)—ao(x,t)u in @ x(0, 7],
J. k=1 J
(11) u(x, t) =0 on 92 X(O, T] y

u(x,0) =u’(x) inQ,
u,(x,0) =u’(x) inQ.

Here € is a bounded domain in R" with sufficiently smooth boundary 9%, a (X, 1)
and a,(x,t) are sufficiently smooth real-valued functions, the _matrix (a,) is
symmetric and uniformly positive definite and 4 is nonnegative on £2.

For s > 0, H*(22) = H* will denote the Sobolev space of real-valued functions on
€. The norm on H* is denoted by || - ||,. The inner product on L?(2) = L*> = H  is
denoted by (-, ) and the associated norm by | - || H} denotes the subspace of
functions in H' that vanish (in the sense of trace) on 0%.

L(¢) is a smooth family of unbounded selfadjoint operators on L? with domain
D; = H* N H} and a smooth family of bounded operators from H'*> N D, to H',
for I > 0. LY(¢t) = (d/dt)’L(t) is calculated by differentiating the coefficients of
L(t) with respect to time.

The solution operator T(¢): L* — D, of the elliptic problem (w = Tf)

Lw=f inQ, w=10 onodf,
satisfies the equation
(1.2) a(T(t)f,v) = (f,v) forallv € H},
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for given f € L?, where a(-, -) is the bilinear form

N

(13) a(¢,¢)=fﬂ( ) ,k;’j T +a0¢¢)

J. k=1

for ¢,y € H'. For [ > 0, T(¢) is a smooth family of bounded operators from H' to
H'*2 N D, . For m > 0, the bilinear form a™(-, -) is defined as

N 9"a 3 9 m
(1.4) a™ (¢, ¢) E/Q( r =2 aj a,ﬁ?w)
J

J k=1

foro, ¢ € H™.

Section 2 contains two regularity theorems for the solution of (1.1).

In Section 3, the approximate solution operator 7, (defined using a Galerkin finite
element method on subspaces of piecewise polynomials of degree r — 1) is intro-
duced and is used to define the semidiscrete approximation u,,(¢). For integer J > 0,
the following estimate is proved.

sup [|(u2(1) = uf (1))

o<e<T

(1.5) < (1wl ern + [l )

+C §0(||Th1/2(0)(u(1+1)(0) — uf?"0(0))[ + u(0) - ui(lj)(o)“)‘

Here u)(¢) and uf/'(¢), for j = 0,...,J, denote the jth time derivative of u(¢) and
u, (1), respectively.

In Section 4, a single step fully discrete approximation W}" to u,(nk), where k
denotes the discrete time step, is defined. These schemes are based on a class of
methods for approximately solving stiff ordinary differential equations. Methods of
order » are considered, where 1 < » < 4. The fourth order method corresponds to
the 2-2 rational Padé approximation to the exponential when it is applied to
equations with time-independent coefficients. Only unconditionally stable (e.g., 4-
stable methods) are considered. The following fully discrete error estimate is proved:

() = Wl < S (17200t O] +[uf )
(1.6) j—O
+clles(v©) = wO)lly

where N = 7/k and [1Q,(U,(0) — W°)lllo measures the error in the initial data of
the fully discrete problem.

In Section 5, special operators are constructed and are used to define the initial
data U,(0) for the semidiscrete problem. U, (0) never has to be computed since it is
close to a special choice of the initial data W° (which is reasonable to compute) for
the fully discrete problem. The proofs of Theorems 5.1 and 5.2 are contained in
Section 8 which appears in the supplements section of this issue.

In Section 6, the results of Sections 3, 4 and 5 are combined in order to derive the
L? error estimates. The special definitions of U,(0) and W° imply appropriate
bounds for the terms after the inequalities in (1.5) and (1.6). In other words, optimal
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order error estimates for the initial data of the semidiscrete and fully discrete
problems and bounds for time derivatives of the solution of the semidiscrete
equation are obtained. Therefore, the triangle inequality and (1.5) and (1.6) imply
the optimal L? estimate

(1.7) lu(r) = W] < c(rm + &*)(I1ullp +[u],-1),

for a certain integer p.

There is an extensive literature concerned with the error analysis of the methods
mentioned above for linear parabolic equations and second order linear hyperbolic
equations. Bramble, Schatz, Thomée and Wahlbin [6] analyzed semidiscrete ap-
proximations for parabolic equations with time-independent coefficients and Baker,
Bramble, and Thomée [3] analyzed single step fully discrete approximations. Zlamal
[22] analyzed fully discrete approximations based on linear multi-step methods.
Sammon in [20] and [21], Bramble and Sammon [5] and Mingyou and Thomée [19]
analyzed approximations for parabolic equations with time-dependent coefficients.

For second order hyperbolic equations with time-independent coefficients Baker
and Bramble [2] analyzed semidiscrete and single step fully discrete approximations.
Baker, Dougalis and Serbin [4] analyzed fully discrete approximations based on
two-step schemes. Two-step schemes producing second order accuracy were also
studied by Baker [1] and Dupont [11]. In addition, for high order single step
methods, see Crouzeix [7] and Gekeler [13], and for multi-step methods, see Dougalis
[8] and Gekeler [12].

Some of the techniques and results in this work are similar to those in Bramble
and Sammon [5], Sammon [20], [21], where parabolic equations with time-dependent
coefficients were analyzed. The analysis here for the hyperbolic equation (1.1)
involves noncommutative skew-symmetric operators (the analogous operators in the
parabolic case are selfadjoint and positive definite) and special time-dependent inner
products.

Throughout this work C (sometimes used with a subscript) will denote a general
positive constant which is not necessarily the same in any two places.

2. Regularity. This section contains two regularity theorems for the solution u of
(1.1) in L2-based Sobolev spaces. Theorem 2.1 concerns time derivatives of u and
Theorem 2.2 includes estimates for mixed (time and space) derivatives of u.

Let C°([0, 7]; H) be the space of continuous functions from [0, 7] to the Hilbert
space H with the norm

Iflcoqo.rmm = sup [[f(2)]|n < +o0.

1€[0,7]
For integer i > 0 let ‘) denote the ith time derivative of u. Also, define

u0=u,

u; =u,;, and

(2.1) 2/,
= (l . )L("Z‘J)(O)uj fori > 2.
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u; is defined to correspond to the ith time derivative of u at t = 0 and for i > 2 is
obtained by formally differentiating the equation u,, = —~Lu i — 2 times. Note that
fori>2

22)  lul < (Il +Jufl,—1) and Jull < SNl +[uf]-)-
THEOREM 2.1. Let i be a nonnegative integer. If
(2.3) u, €D, forj=0,....i and u,, € H;,
then there is a unique function u such that, for t € [0, 7], u(t) € H} and
(u,,¢) +a(u,¢)=0 foral¢ < Hy,
(2.4) u(0)=u" inH}, and
u,(0) =u" inL%

Furthermore,
2.5) ]| coqo,1;p) + [u P coqo,r1; 1) + || D) coqo,71; L2
< C(||u0||i+2 +”u?||i+1)
and
i-1, .
(2.6) ul*? 4+ Ly + Yy (})L(i_f)u(f) =0 inC°([0,7]; L?).
=0

Proof. Notice that (2.3) implies that u;, € L. From Gilardi [14] the solution of
(2.4) exists and is unique and

i+1 i+1 i+2
27)  u" Py + X uPlecqommp < €| X llul, + X IIuJII)-
j=0 j=0 j=0

Let ¢ € Hj. Differentiating the equation
(u®(1),9) +a(u(t),$) = 0

k times gives
k—1

28)  (4%*D(1), 0) + a(u®(1),6) + ¥ (I;.)a(’"f)(u(j)(t),q)) _o.
j=0

The remaining parts of the theorem are proved by induction on k. For k = 0 we
have '

(u@(1),¢) +a(u(r),9) =0.
Since u®(¢) € L2, by elliptic regularity
u(t)e D, and u®(¢)+ L(t)u(t)=0.
Furthermore,
Cllu(t + k) = u(®)| <|L(t + B)(u(t + k) — u(2))]|
<IL(e+ m)u(e + k) = L()u(o)]| + [ L(r)u(t) = L(z + h)u(2)]|
<[u®(r+ n) = u@ ()] + Chlu(1)],.
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Since u® € C°([0, 7]; L?) and u(t) € D,, it follows that u € C°([0, 7]; D,) and
lullcogo,r1;py) < Cllu®||coqo,ry;2)- Now assume
j+2
lu P coqortiny < C X Ju?|coqor;22y forj=0,...,k —land k < i.
p=0

Integrating by parts in (2.8) gives

(u*+2(1), ¢) + a(u®(r), $) + kil (1;)(14(/(—1)“(/)(,),(;,) =0.

j=0
An argument similar to the one given above for k = 0 gives

k-1
u(k+2)(t) + Lu(k)(t) + Z (I;)L(k—J)(t)u(j)([) =0
=0

and u® € C°([0, 7]; D,). Also,

(2.9) [u®|coqo, 1,0, < C

k+2 .
> |lu‘“|iC°([0,fJ;L2>)-
Jj=0

Combining (2.2), (2.7) and (2.9) proves the theorem.
The following technical lemma will be used in the proof of Theorem 2.2.

LEMMA 2.1. For integers p > 1 and [ > 0, the operator
p-1 P
(2.10) TP =_%" ( .)TL(P_”T(/)
“\J
J
is a bounded operator from H' to H'*? N H}.

Proof. Since

p—1
”T(p)f”1+2 <C E {{TL(”_j)T(j)l,1+2
Jj=0

p—1 p—1
<C LI TOf| < € X NTOf |lisas
j=0 J=0

and T is a bounded operator from H' to H'*? N H}, the result follows by induction.
We can now prove

THEOREM 2.2. For integers p > 0 and m > 1, the solution u of (1.1) satisfies the
following estimates for t € [0, 7]:

pt2m
(2.11) [P ()2 < € gz lu ()],
212) DO <€ X (O

Proof. Equation (1.1) can be written u = ~Tu,,, so that

o (P
ulP=_% ( .)T(pwj)u(/+2)‘
j=0\/
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Therefore,
p
(2.13) luPlam < € X NTPuT* 2.
j=0
Lemma 2.1 and (2.13) imply that
D p+2

(2.14) luPlam < € X Nu Pam—2=C X [ 2m-2.

j=0 =2

(2.11) follows from (2.14) by induction. The proof of (2.12) is similar.

Note that Theorem 2.1 and Theorem 2.2 imply that if u € Dy forj=0,1,...,
p+m—2and u,,, , € H}, where p >0 and m > 0 are integers such that
p + m = 2, then fort € [0, 7]

(2.15) [P @)l < Clullprm + [l 4 m1)-

3. Semidiscrete Approximations. The solution operator T of the associated elliptic
boundary value problem which is defined by

a(Tf,v) = (f,v) forallv € H}, for givenf € L2,
satisfies
TL=1 onD, and LT=1 onl?

Let 0 <h <1 be a parameter, and {S,},<4<; @ family of finite dimensional
subspaces of L*>. We shall assume that we are given a corresponding family of
operators T,,: L* — S, which approximates 7 and has the following properties:

(i) T,, is selfadjoint, positive semidefinite on L?, and positive definite on S,,.

(ii) There is a positive integer r > 2, such that for integer j > 0, there exists a
constant C(j) with

(3.1) (T = T19) 1| < C(i)ReNf s-2
forallf€ H*"% 2 < s < r, and where T and T}’ denote the jth time derivative
of T and T, respectively.

(iii) On S, define L,(r) = (T,(¢))* and L§F(¢) = d*L,(t)/dt*. For integer
k > 0, there exists a constant C = C(k), which is independent of 4, such that for
t,s €0, ]

(3.2) (L (1) 9, 9)| < C(k)(L,(5)¢,¢) forall € S,.

An example of a family of operators satisfying these assumptions is given by the
following: Suppose that S, C Hj so that elements of S, vanish on 0§. Assume
further that S, has the approximation property

inf {“w — x|l + Allw — x”l} < chfw|; forl<s<r.
XES)

The operators 7,: L?> — S, are defined by
(3.3) a(T,f,x) = (f,x) forallx € S,, for given f € L.
With T, defined by (3.3) it follows that

(Ly$,¥) = a(9,y) forallg,y € S).
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For more details and other examples see Bramble, Schatz, Thomée and Wahlbin
[6], Baker and Bramble [2], Mingyou and Thomée [19], Sammon [21], and Section 7.
The hyperbolic problem (1.1) can be written

Tu,+u=0, u(0)=1u" u, (0)=u’.
The semidiscrete approximation for the solution u is defined as the mapping u,:
[0, 7] — S, satisfying
T,(u,), +u,=0, 0<t<m,

un(0) = 0% (uy),(0) = o,
where v° and v? are elements of S, which will be chosen to be close to u° and u).
This section contains two theorems about time derivatives of u;,. Theorem 3.1 is a
bound for time derivatives of u,(¢) in terms of time derivatives at ¢ = 0. Theorem
3.2 is a bound for time derivatives of u(¢) — u,(¢) in terms of its time derivatives at
¢t = 0 and truncation error. The bounds derived for time derivatives of u(¢) — u,(¢)
are used with a special choice of the initial data u,(0) and (u,),(0). In Section 6, we
will show how this special choice for the initial data for the semidiscrete equation fits
perfectly into the analysis of the fully discrete approximation. These two theorems
concerning bounds for time derivatives of u, are proved using energy methods.
Differentiation of (3.4) yields terms containing time derivatives of 7). In order to
bound these terms in the energy estimates we prove a technical lemma. Since
T,L,=L,T,=IonS,, fork>0

(3.4)

a (k) panpo
(39) Sri) = X (G =o,
and

d* N AN
(3.6) -d—;(LhTh) =Yy (j)Lgl DT = 0.

Similar equations are valid (on the appropriate function spaces) if 7, and L, are
replaced by T and L, respectively. Since 7, and L, are positive definite on S, T2
and L}/? exist and are positive definite on S,. We note that (3.3) implies that
T,P = T,, where P is the orthogonal projection in L? from L* to S,,.

LemMMA 3.1. Let k > 0 be an integer and s,t € [0, 7]. Then for all $ € S, there
exists a constant C which is independent of h such that

(3.7) |72 (s) L () T2 () ¢l| < Cléll
and
(38) 1L ()T (1) L (s) 8| < Clg-

Proof. L§¥(t) is symmetric and we begin the proof by showing that 7,¥)(¢) is
symmetric. Since L, (¢)7T,(¢) = I and T,(¢)L,(¢) = I,

e (0 = - % (5w
Jj=0

and

(3.10) () - - % (I;)Th("“)(t)L?’(t)Th(t).

i=1
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Therefore,

k-1 k A
(ro() = - £ (5@ myee 00

Jj=0

-2 [ Jm @ ono.

By induction these formulae imply that 7,(%(¢) is symmetric.
Now, if 4 is a symmetric operator on a finite dimensional subspace of L (e.g., S,),
then

(3.11) 4] = sup 1421 (49, )|

= sup

o0 19l ouo (9,9) °

Since the operators in (3.7) and (3.8) are symmetric, (3.7) and (3.8) are equivalent to

(3.12) (T2 (s) LY ()T () 6, 0)| < C(9,9)

and

(3.13) |(LY2 ()T (1) Ly *(s)$, 6)| < C(9,¢) forallg € S,.
From (3.2),

(L), )| < C(Ly(s)¥. y) forally €5,
(3.12) follows with the choice ¢ = T}/*(s)¢.
(3.13) is proved by induction on k, starting with k = 0. From (3.12) we know that

(T32() Ly(s) T2 (1), ) < C(8, $).
Let A = T}/*(¢)L,(s)T;*(t). Now
(3.14) (4¢,¢) < C($,9),
where 4 is selfadjoint and positive definite. With ¢ = 4*/?¢ (3.14) becomes
(¥, 9) < C(A47y,¥).
Since A7} = LY2()T,(s)Li/*(¢),
(3.15) (¥, ¥) < (LT () L () ¥, ).
With ¢ = T2/%(s) LY/*(¢)¥, (3.15) implies that
(T2 () LY (s) 9, T2 () Li?(5)$) < C(¢, )
or
(L2 ($)Tu(1) L (s) 6, ¢) < C(9, 9).
Now assume (3.13) for k < n. From (3.9)
UIOEES o M EAOV SO
j=0
so that
Ly (s)T{" P () L% (s)
N R [CERIAGEEE)
=0
(T2 (s) Ly () T2 ()L ()T (1) Li (5)).
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Since the operators in parentheses are bounded (independent of #), (3.13) follows
and the proof of the lemma is completed.
Note that Eq. (3.13) implies that for any ¢ and s € [0, 7] and any integer k > 0

(3.16) (TR (), )| < C(k)(Ty(s)y,y) forally € S,.

(3.16) is analogous to the assumption (3.2) for L{¥(¢) and will be used in several
estimates.

We now use energy methods to bound time derivatives of u,(¢) by the derivatives
att = 0.

THEOREM 3.1. If J is a positive integer, then the Jth time derivative u}’) satisfies
=1y
(3.17) Tul’ ™+ ul) + Y (J.)T,,”‘“u},f”) =0
j=0
and forJ > 0

(Thuf,J“), u;'J+1)) + ”“;(zj)llz

(3.18) J ‘ ,  Jt1 '
[ @ + X (10 0)|

<C

Proof. (3.17) is the Jth time derivative of (3.4). We prove (3.18) by induction on J.
The case J = 0 follows by multiplying (3.4) by u{" and integrating in the space
variables. This procedure yields

1d 1 1d 2
3 (T, ) = (TP, ) + 3 L | = 0.

Integrating from 0 to ¢ gives
(T, ) + il = (T, ) (O) + g O + [ (TOuD, uf?)(5) ds.

(3.16) and Gronwall’s lemma complete the proof for J = 0.
Now, we assume (3.18) for J < n — 1. Multiplying (3.17) by u}"*? (with J = n in
(3.17)) and integrating in the space variables gives

(Thu;ln+2), u;'n+1)) + (u;'n), u;'n+1))

3.19 =
(3.19) + ¥ (;)(Th(n—nu’(zﬁa, ui"v) = 0.
j=0

Using the identities

1
(Thu2n+2), u;'n+1)) — (Thu;er-l), u;]n+1)) _ E(Th(l)u;:”—l)’ u;ln+1))’

N —
SEN

(uf?, i) = 5 i lt”l
and

- j — 1/2 -Nrl/2m1/2 2 1/2 1
(TP, g 0) = (LT LT g, T g ),
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in (3.19) and integrating from O to ¢ gives

1 n n 1 n n
(3:20) S (Thuf™* 2, uf*0)(e) = 5 (Tyuf 2, ufr*2)(0)

1 2 1 :

+ 5[ (O = 3 [ )]

_ (% B n)j(;t(Th(l)u}(un+1)’ u£n+1))(s) ds

_ ij(? )fot( LT DLPTY ufd D, T 2uf D) ds.
)=

By Lemma 3.1 and (3.16)
I(Th(l)u,(ln+l)’ u}('n+l))l < C(Thu,(,"“), u;ln+l))
and
l(L}'/zTh(n—j)Llh/zThl/zu;zﬁz)’ Thl/zu;'n+l))l
< C”Thl/zul(zj+2)“ “Thl/Zu}('n+l)“
< (T, ™) + (T, ™).
Using these two inequalities in (3.20) yields
(Tyuf? ™V, 0) (0) + g ()|
(3.21) < (Tuf* D, ufr™)(0) +[uf” )
t

n—2
1 .
+C [(Tur+ D, ufrt D) ds + C [ X (Tuf*?, uf ™) ds.
0 0 ;=

Jj=0

By the induction hypothesis

n—2 n—1 n
E (Thuflnz), u;lj+2)) < C( Z “u;'/)(o)llz + Z (Thuﬁ,f), u;lj))(()))’
=0 j=0 j=1

This estimate and Gronwall’s lemma in (3.21) show that for any ¢ € [0, 7]

n+1 n
(TulD, wfmD)(6) +|us” ()] < €| T (T, ug?)(0) + zonuzf><0)||2).
Jj=1 J=

This proves the theorem.

The next theorem is a bound for time derivatives of u(z) — u,(¢) in L. Let
e(t) = u(t) — u,(t) and, for positive integer J, e(t) = u)(¢) — u\"(¢). Subtract-
ing T, (uy),, + u, = 0 from Tu,, + u = 0 gives the following error equation.

(3.22) T,e®+e=(T,— T)u, = p.

THEOREM 3.2. Let J be a positive integer. The solution e of (3.22) satisfies

J-1
(3.23) T+ e+ ) (‘J’.)Th“_/)e(“z) = p
j=0
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and fort € [0, T]andJ > 0

(Te*D, e 0)(1) + e (1)

J+1 J 2
< c( Y (e, e0)(0) + 3 [9(0)]

j=] J=0

- o)

(3.24)

+ sup ( 5 100"

0<s'<t \ =0

Furthermore, for2 < s <r,

(325)  (T,e¥*V, e D)(1) +[e ()|

J+1 J 2
<C| L (1, ?)0) + L [ O]

+h2s(||u0|lj+s+1 + ||u?|],”)2).

Proof. The proof is similar to the proof of Theorem 3.1. Here e replaces u,, in
Theorem 3.1 and p replaces 0 on the right-hand side. (3.23) follows by differentiating
(3.22) J times. With 7’ = T/'P and T,"/> = T,/*P, where P is the L* orthogonal
projection onto S, the same estimates for 7,/) that were used in the proof of
Theorem 3.1 prove that

(T,e* D, e *D) (1) + e (1)

< (190,67 *D)(0) + e Q)

(3.26)

J=2
+C ft(The”“),e”“))ds+ft Y (TeV™2,ev*D) ds
0 0

J=0

+2ft(p(”, e *D) ds.
0
Since

d
(p(J), e(1+1)) = E(p(l)’ e(J)) —(p(1+1), e(J)),

it follows that
ft(P(J), e D) ds = (pU), eD)(1) = (p, e¥)(0) _f‘(pml), e) ds
0 0

and
t 2 1 2
2f0(p”’, eV D) ds < 2p ()] + 3 e (o)
(3.27) o2 + e @) + [0 V] ds
0

+ [N ds.
0



394 LAURENCE A. BALES

(3.24) is proved by induction. For J = 0 (3.26) and (3.27) give
(T, e®) + el < (T, e®)(0) +[e O]

+ C'[O'(The(l), e®) ds + j(;t ||e||2 ds

+2p (I + 1o + 3 le()]” +1e@) + ['lo) a5

Subtracting $||e(7)||* from both sides and Gronwall’s lemma give (3.24) with J = 0.
Now we assume (3.24) for J/ < n — 1 and use (3.27) in (3.26) (with J = n in (3.26)
and (3.27)) to obtain

(T,e™*D, e D) (1) + e (1)
< (T,e"*D, e+ ) (0) +[|e™(0)]”

n

n—1 N
Z (The(/)7 e(j))(o) + Z Ile(f)(())”‘

+C
J=1 J=0
(3.28)
+ sup Z [0 (s’ g Zf e do))
0<s’'<t j=0

2
2 ()] + o) + 5 e O + e )]
2
+f0t [ D|" ds + C-/(‘)I(The(”“), e("D) ds + fot le™|’ ds.
Subtracting 3|l (¢)||? from both sides of (3.28) and using Gronwall’s lemma gives

(The(”+1), e(n+1))(t) + ||e(n)(t)||2
n+1

<4zuwuw@+hwww

j=1 j=0

e Lo S [k an)

0<s'<t\ j=0

and this is (3.24) with J = n.
To complete the proof of the theorem we show that (3.25) follows from (3.24).
This requires estimating the terms

J 2 J+1 » _ 2
(3.29) L1e2@ + E [ le2(] do.

When the terms p'/ appearing in (3.29) are estimated using Leibniz’s rule and the
triangle inequality, the resulting terms which require the most regularity on u are

(330) (T, = T and [T, - T)u (o) do.
0

From (3.1)
(7 = TYu"*2(s)] < Chllu?*D(s)],—,
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and
/OS'“(T,, = T)u’*(o)| do < Ch%fo" e+ (o)}, do
and from (2.15) it follows that for 0 < s’ <t < 7,
”“(HZ)(S/)”s—z < C(||u°||,+s+1 + ||u?“.l+s)’

L1 @) -2 do < (s + [l )

All other terms which are produced by using Leibniz’s rule in (3.29) are bounded by
Ch>*(|[ull 1541 + lufll;+,)* and therefore

J . 2 J+1 s’ 2
sup | X o 2(s)] + X fo o] do
=1

< Chzx(||u0||1+s+1 +””?“J+s)2'
0<s'st\ =0 J

This proves (3.25) and completes the proof of the theorem.
Special initial data will be required so that the terms

J+1 J 5
L (162 e)(0) + £ [0 0)]

can be bounded by #2*. The initial data will be chosen so that fully discrete error
estimates can be proved also (see Section 4). The special initial data is the subject of
Section 5 and is motivated by work in Sammon [20] and [21].

4. Single Step Fully Discrete Approximations. In this section discretization of
(3.4) in the time variable is analyzed. (3.4) is a system of ordinary differential
equations and a class of single step methods is applied to these ordinary differential
equations. For the single step methods the interval [0, 7] is divided into N equal
subintervals of length k and ¢, = nk for n = 0,1,...,N. For any smooth function
y(t) the methods (which are called Obrechkoff methods (see Lambert [16])) are
defined by the formula

(4.1) Vi1 = n = k(=@ i1 + p1yy) + K2 (=g + P2y,
where y,, y,, and y,, for m=0,1,...,N, approximate y(¢,), dy(t,)/dt and

d*y(t,,)/dr?, respectively, and p,, g;, for i = 1,2, are given constants. The function
& [ y] defined by

(42) Ayl =yt + k) =y(t) + k(qy'(t + k) = p1y'(1))
+k* (g (t + k) —p,y"(t))

is associated with (4.1). &/[ y] is the truncation error of the single step methods and
will be used to define the order of a given method.

Definition 41. A method given by (4.1) is of order » > 0, if &/[t/]=0 for
j=0,1,...,»,and [t 1] # 0.

Definition 4.2. The stability region R associated with a method given by (4.1) is
defined as R = {kA: where A is any complex number and k any positive number
such that when the method is applied to y’ = Ay with y(x,) = y, given and with
constant step size k, the sequence { y, }2_, satisfies | y,| < |)l}-
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For the methods given by (4.1), 1 < » < 4. We will assume that ¢, = p, = 0 in
(4.1) when » = 1. Also, in this work we will assume that the stability region R
contains the imaginary axis, i.e., the methods are unconditionally stable. The latter
assumption implies that the rational function

r(x)= (14 px+px?) /(1 + g;x + g,x?)
satisfies |r(pu)| < 1 for any purely imaginary number p. This implies that 1 + g, x +
¢,x* has no zeros on the imaginary axis.
Examples of methods satisfying the above assumptions are given in the following
table.

Corresponding Rational

Approximation to Exponential » 4 9 D1 P2
Backward Euler 1 -1 0 0 0
Crank-Nicolson 2 40 1 0
Calahan* 3 20 N 1-2A N-2A+3
Padé 2 -1 3 0 0
Padé 3 -3 i i 0
Padé 4 -1 % 1 &

=11 +1/43).

The definitions given above for order and stability are used in the theory of
numerical methods for ordinary differential equations (see Lambert [16]). In the case
of linear second order hyperbolic partial differential equations with time-indepen-
dent coefficients, these definitions reduce to the ones used by Baker and Bramble [2],
where the single step methods (4.1) define rational approximations to the exponen-
tial.

The following lemma is an analysis of the truncation error (4.2).

LEMMA 4.1. If the single step method (4.1) has order v and y(t) is a function with
v + 1 time derivatives then

#[y] = /tt+k ( +I:, s5)” YD (s) ds

(4.3) lkak (r + k 1)3 y*tO(s) ds

v—2
+ -
+qzk2ftt ) £tJr(Vk_—ZS))!y‘”“)(S) ds.

Proof. (4.3) follows from (4.2) by expanding the terms which contain ¢ + k in a
Taylor series about ¢ and using the fact that &[t/] = 0 forj = 0,...,». If » = 1, the
last term in (4.3) does not appear.

The two polynomials p(x) =1+ p,x + p,x* and q(x) =1+ ¢q;x + ¢q,x* are
associated with the single step methods. Note that p(x)/q(x) is the rational
approximation to the exponential which was analyzed for linear parabolic partial
differential equations with time-independent coefficients in Baker, Bramble, and
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Thomée [3] and for second order linear hyperbolic partial differential equations with
time-independent coefficients in Baker and Bramble [2]. We denote the degree of
q(x) and the degree of p(x) by deg q and deg p, respectively.

In this section in addition to properties (i), (ii), and (iii) (see Section 3) of the
approximate solution operator T, if deg g = 2, we will assume the following inverse
property on S,:

(iv) (L9, 9)'/% < Ch7Y||9].

We note that (iv) implies that

(4.4) Lol < Ch=2]l9],
(4.5) 1L ()T, (1) 8| < Cllall,
and

(4.6) [T, () L (s) o] < Cligll,

for integer / > 0, for s, ¢ € [0, 7], and for all ¢ € S,,. See Sammon [20] and [21] and
Section 7 for more details on these estimates.

(3.4) can be written as a first order system of ordinary differential equations so
that the single step methods (4.1) can be used to discretize the ordinary differential

equations.
With
[ U [0 I
Uh:((uh)l) and gh:(‘_Lh O),

(3.4) becomes
0

(4.7) U,),=%U,, 0<t<r, U,,(O)=(ZO).
t

We now think of y, in (4.1) as approximating U,(z,) for k =0,...,N, and y;
approximating UV (t,), etc. (4.1) requires the second time derivative of U, which is
obtained by differentiating (4.7),

(48) (Uh)tz"?hUh’ (Uh)1t= (‘ghz_’_gha))Uh‘

The following notation will be used so that the equation which is derived from
formally substituting (4.8) into (4.1) can be written in a convenient form.
Forj=0,...,N,
Qj =+ qlk"?h(tj) + q2k2$h2(tj)’ Qj = Q_[ + qZkzgh(l)(tj)’
P =1+p k% (1) +p,k*2}(1;) and P =P + p,k’Z"(1)).
For integer i > 0,

L=10(), 0= TP(),

) = 1 0 — -1\(1)
20 =Z(1)) and T0=(£71)"(y).
Note that.%,, is a linear operator from S, X §, to S, X S, and

=) )
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The fully discrete approximation to (1.1) is defined as {W"})_, c S, X S, which
satisfies
(4.9) Qu W™ =P W",

where W is given in S, X S,. We will show that Q, ., is invertible, if k is small
enough, so that W" for n > 1 is well-defined. We will also derive error estimates for

u(ty) )
(uh)t(tn) '

These error estimates will be used together with the semidiscrete error estimates and
the triangle inequality to estimate ||u(z,) — W}"||, where W)" € §,, is the first compo-
nent of W". This entire analysis will be done in a special inner product on S, X S,
which will be denoted by

Wn_(

(4.10) (@, ¢)),= (¢1,¢1) +(Th(tn)¢2’$2)
where
_ (P _ (¥
q’=(¢2) and ‘P‘(%)

can be complex-valued functions and ¥, and ¥, denote the complex conjugate of ¥
and ¢,, respectively. The corresponding norm is denoted by

(4.11) ell. = (@, ®))Y* forn=0,1,...,N.

Note that from (3.16) it follows that the norms ||| - |||, and ||| - |||,, are equivalent for
any integers m and n between 0 and N,
The following lemma proves that Q,, is invertible.

LEMMA 4.2. For any nonzero complex number a and for all ® € S, X S,

Re a
(412) e lell. <[i(7 + ak )],
and
(4.13) Re of [[kZ,2]|, <[|(1 + ak2Z,) 2],
where Re a denotes the real part of a. If ¢(x) = 1 + ax, then

Re a

(414) Eer liell. <lio,ell,
and
(4.15) IRe of [Ik2,2]| <lIQ,2ll.,
andif g(x) = (1 + ayx)(1 + a,x), then

Re | [Re a |
4.16 —— el <|lo.2ll,,
(416) alla el <lig. e

Re ;|

(417) Sal Rear 2ol <lIQ, 01,
and

(4.18) IRe | [Re | |27 2]| <]|Q, 2l
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Proof. (4.14)—(4.17) and (4.18) are applications of (4.12) and (4.13). It suffices to
prove (4.12) and (4.13).

Let {¢;}/2; and {A;}/Z; be the orthonormal eigenfunctions and eigenvalues of
L,. &,=(_1 ¢)hasorthonormal eigenfunctions

o, L[ ®
R T
(which are a complete set) and eigenvalues +iyA j for j=1,....,m. With ® =
el

(I+akZ,)®= Y C(1+ ak(sgnj)iAin)®,,

j=-m
where sgn j is the sign of j. We have
m
2
(4.19) I+ ak &)l = L IGf |1 + ak(sgn j)ivAui
j=-m

and

2 noo o~ 2, 2|1+ ak(sgn j)ivAi?
4.20 I+ akZ,)0||, = kivAyi|”|C; :
I e L e o
Let x = kVA |, sgn j. Since the functions fi(x) =1 + aix|*> and f,(x) =
1 + aix|?/x? satisfy f,(x) > [Re a|>/|a|? and f,(x) > [Re &|? for all real x, it follows
from (4.19) and (4.20) that
2 i 2|Re af?
Iz + akz)ell, > T jof RS-
Jj=-m |a|
and
2 m ) 2, 2 2
(1 + ak&)@ll, > X [kivAul |G [Reaf”.
Jj=-m
These estimates give (4.12) and (4.13) and complete the proof of the lemma.

The next lemma proves that if k is small enough then Q, is invertible (when g(x)
is quadratic).

LEMMA 4.3. If k is sufficiently small and q, # O, then for all ® € S, X §,,

(4.21) alle.2ll, <lig.ell, < Gllo.2ll,,

where C, and C, are independent of the step lengths h and k.
Proof.

(4.22) (2, — ) @ll, =[lg.k*< 2],

It is easy to see that

0
D =
kégz 5;¢ k(z&h]}¢2)

and

€@l = |1 2LOT | = |10 T 2Ty
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From this identity and Lemma 3.1,

2
LTl < STy, T2, 4,) = C(Ty, ¥y).

Therefore, kll£ 7y, < Cklllylll,. Substituting ® = Ty gives k|l LV, <
Cklll-Z,@lll,,. From this estimate, (4.22) and Lemma 4.2 (from the stability assump-
tion g(x) has no roots on the imaginary axis) we have

12, = 2.)2ll, < cklio2ll,-

The triangle inequality gives

1 - colle.2ll, <llg.ell, < 0 + ck)llo,ell,.

This estimate gives (4.21) for sufficiently small k and completes the proof.

The fully discrete scheme defined by (4.9) is well-defined since Q, ., and Q,,, , are
invertible. We now analyze the error [|U,(z,) — W"|ll, by studying the following
error equation. Define E" = U,(¢,) — W" for n = 0,1,...,N. By manipulation of
(4.9) we have

Qn+1E‘n+1 = Pn+1En +(Pn - Pn+1)En
(4'23) +(Pn—Pn)En+(Qn+l - Qn+1)EnJrl
+0,41Ui (1,41) = BU(1,).
The next four lemmas bound terms in (4.23).

LEMMA 4.4.

(4.24) B E7lsr < (4 CR)NQ, B,
Proof +1En Qn+1 +1Qn+1En and Wlth‘l/ Qn+1En = Z_,1n=—m C(I)j’

p((sgn j)i\/XUl)
q((sgn j)ivA 1)
where { @} are the eigenfunctions and {(sgn j)iVA 11 }j=-m are the eigenvalues
of &, .1, which were introduced in the proof of Lemma 4.2. From the stability
assumption, it follows that if Reu = 0, then | p(n)/q(p)| < 1. Hence, the stability
assumption and (4.25) imply that 1Q;1, P, ¥ll7+1 < [I¥ll7+1. Substituting ¢ =
Qn+ lEn giVCS

(4.26) 12, B 1 <@ B
(4.24) follows from (4.26) and the following lemma.

(4.25) ”lQ;Tl +14’|||n+1 | |

Jj=-m

LEMMA 4.5. For any ® € S, X S,

(4.27) IH<I>||ln+1 (1 + Ck)”l<1>||ln,
and

(429) I”(Qn - Qn+1)En”In+l < Ck”lQnEnmn
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Proof. To prove (4.27) note that since

@It = (o1, 1) +(T;10, 6,)) and @] = (1, 1) + (T, 6,)),

llo1 =@l = (Tps1 — T,) 6, 6,)
= [" (LT () LT %5, TV ;) ds.
!

n

So by Lemma 3.1,
2 2 2
li@ln+1 <@l + Ck(T,, 6,) < (1 + Ck)|I@f2
and

l@llsr < (1 + Ck) 1@l < (1 + Ch/2)]| @]
This proves (4.27). To prove (4.28) and (4.29) we first show that

(4.30) (L1 = L) @1 < CKllIQ,2ll,
and
(431) ,”kZ(%Z_H - xlz)q)l”n+1 < Ck”,an)mn
Note that
o e [ LP(s) 0
Ly~ L = ft., £V(s)ds and L), —&' = '/;" 0 ~LM(s)
Therefore,
(432) (L = L)l < [T A0 (6) 740 5
and
2 _ 2 In1 _ngl)(s) 0 202

(433) “I("Zr+l "Zr )q)”'n+1 < '/11. 0 —LE,I)(S) ,7; ‘3711 o n+lds'
Since

[0 () Zod s =ITHELEO () Ts|| < C TS|
and

2
=LP ) T + | TELP(5) T

n+1

< (Il +17.0").

|

it follows that

Ps) 0 |,
0 —st))m

|||k(°g7n+1 - ‘gyn)q)llln+1 < Ck2|||$n®|||n+l
and

(22, - 22)al,., < crlleza)

n+1*
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These two inequalities used together with (4.27) and Lemma 4.2 imply (4.30) and
(4.31). Substitution of ® = E” in (4.30) and (4.31) and the triangle inequality give
(4.28) and (4.29).

LEMMA 4.6.
(4.34) (2, = P)E"|l,er < CKI|Q,E7,
and
(435) |||(Qn+l - Qn+1)En+1”|n+1 < Ck|||Qn+1En+1|||n+l'

Proof. The proof is the same as the one given in Lemma 4.3. If p(x) is quadratic,
then

”l(i)n - Pn)En”|n+1 = |||p2k2$n(l)En”|n+1 < Ck2|||$n(l)'7n$nEn|”n
< Ckl|2,E"l,,

where we have used (4.27) and the proof of Lemma 4.3. (4.35) follows from almost
exactly the same argument.

LEMMA 4.7. The “truncation error”
(436) |||Qn+1Uh(tn+1) - PnUh(tn)”|n+1 < Ckv_/t‘tnﬂ ||| Uh(y+1)(s)”|n+1ds'

Proof. By definition
Qn+1Uh(tn+1) _PnUh(tn)
= Uy(t,1) + kU (t,41) + k70 P (1,41)
- Uh(tn) _plkUh(l)(tn) _kazUh(Z)(tn)'

The inequality (4.36) follows from this equality and Lemma 4.1.
The next theorem uses Lemmas 4.4, 4.5, 4.6 and 4.7 to estimate the terms
appearing in the error equation (4.23). The fully discrete error estimate is the result.

THEOREM 4.1. The error E" = U, (¢t,) — W" satisfies the estimate
2
Qi B[+

2
< (4 QORI + ok [+ U s

n

(4.37)

forn=20,1,...,N — 1, and

(4.38) llexe™|ly < clleoello + ck*

v+1 .
| vh<»<o>|||0).
J=0

Proof. To prove (4.37) we take the ((-,-)),,; inner product of (4.23) with
0,..F "*1 and use Lemmas 4.4, 4.5, 4.6, and 4.7 to estimate the terms appearing
after the equality in (4.23). These terms are estimated as follows:

@
((Pn+1En’ Qn+1En+1))n+1 < |||Pn+lEn|||n+1|||Qn+1En+1|||n+1

2 2
< 3P oMy + 31 Qi B -
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Using Lemma 4.4, it follows that
2 2
(439) ((Pn+1En’ Qn+1En+1))n+1 < %(1 + Ck)l”QnEn”ln + %|||Qn+1En+1|”n+1'
2

(((Pn - Pn+1)En’ Qn+1En+1))n+1 \“'(P Pn+1)En|||n+1|||Qn+1En+1”|n+1'

Using (4.28) in Lemma 4.5 gives
(B = Prs) E" Qi E™)) 10y < CR(IQE" NI Q0 i " l01)

(4.40)
C n+
) (”lQnEnHI +|||Qn+1E 1|||n+1)
(3) From Lemma (4.6)
(4'41) (((Pn_Pn)E"’ Qn+1En+1))n+1 (l”QnEnlll +|||Qn+1En+1|”n+1)
and

(442) (((Qn+1 Qn+1)E"+ ’Qn+1En+1))n+1 Ck”IQn+1E +1|||n+1
(4) From Lemma (4.7)

((Qn+1Uh(tn+1) - PnUh(tn)’ Qn+1En+1))n+1

(449 < (k[ YD s @i B

n

2 -
< Cka—l(j:th I” Uh(y+1)(s)”|n+1ds) + Ckl”Qn+1E"+1”|n+1'
Using the estimates (4.39)-(4.42) and (4.43), gives

Qi B ey <30+ CVNQE™, + 4| @0r B

+ ClklllQnEnlun + CZkI"Qn+1En+II"n+1

reu{ [
t

n

2
[0+ 2 ()

Subtracting the terms containing ||Q,, ; E"**|ll2+1 on the right-hand side gives

1 2 1 C
(3= kB < (3 +(5 + )k Ie.£7W,

+C3k2"‘1(f"+l
t,

n

2
U2

If k is small enough, dividing by (3 — C,k) and bounding the constants produces
(4.37).
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To prove (4.38), we start with (4.37). From Theorem 3.1 it follows that

(Thuzwz), uf,"+2))(s) + ||u§,"+1)(s)||2
v+1

v+2
< c( S O + T (T, ) 0)
j=0 =1

v+1 ) 2
<C X U2 ©)o-
j=0
It follows that

(/’n+l
’"

So (4.37) becomes

2 v+1
[0 lrs| < k2 Z 52O
Jj=0

v+1
IQu i "l < (1 4+ CONQEN, + k> X [T
j=0

Since 1 + Ck < e, the above estimate gives
5 v+1 ) 5
1@ B M llair = el QuE7M < k2 X [|U2(0)f

j=0
Muliiplying by e~ “"»+1 yields

2 v+1
100t B s — el QL E"I, < Cke™Cer) (k) z 52 ©)o-
b

e'cln+1

Summing fromn = 0 to N — 1 gives
v+1 2
e-lonEM - llooE?ll < ek X [ (),
j=0
or

2 2 v+1 ) 5
llowE" Ml < e liQoE llo + cle™)(k™) L UL Ol
j=
Taking the square root and defining new constants produces (4.38). This completes
the proof of the theorem.
Theorem 4.1 and Lemma 4.2 imply that

v+1
1 < clle e+ | E [ 0]
j=0
Since ||u,(ty) — WV|| < IIEV]Ily, it follows that

(44)  fuy(en) = W < Cll@oEClo + ck”

v+1
£ s ol
=
(4.44) and Theorem 3.2 (U(¢) = (,“(9)) imply that
u,(1)

”“(’N) - WIN” < | |lu(o) = U, ()|l + hs(”“()”sﬂ + ”“?”s)

(4.45) »
2ot 0) - W), + Y. |||uh<f><o>n|o)

j=0
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for 2 < s < r. It remains to be shown that three of the four terms on the right-hand
side of (4.45) can be bounded in an appropriate way so that (4.45) is an optimal
error estimate. Optimal is defined as the type of estimate derived in Baker and
Bramble [2], where the case of time-independent coefficients was considered. Bound-
ing the terms in (4.45) requires special choices for U,(0) and W so that (4.45) will
be an optimal estimate. The construction of functions which we will use for U, (0)
and W is the subject of the next section.

5. Construction of Initial Data U,(0). In this section operators on L* X L? are
constructed out of £ and 7 and operators on S, X S, out of &/’ and T,/".
These operators are analogous to operators used for parabolic equations with
time-dependent coefficients by Sammon in [20] and [21]. They will be used to define
special initial data for the semidiscrete problem as in the parabolic case. In Section
6, we will show that with a special choice for W° the fully discrete scheme defined
by (4.9) is not changed by the special initial data for the semidiscrete problem.
Specifically, the fully discrete scheme (4.9) and W ° do not depend on the parameter
a which will be introduced below in order to construct the operators mentioned
above.

With U = (), the hyperbolic problem (1.1) can be written as the first order
system

0
(51) U=2U, U0 - ()
t
where £= (% {). & is an unbounded operator on L? X L* with domain D,=
D, X L2. Also, with U = e~*U, it follows that
U = ae®U + e,
and, using (5.1), that

0
(5.2) 0= (2-al)U, 0(0)=U(0) = (ZO)

t

Differentiation of (5.2) m times gives
(53) 0(m+1) = "‘fm+10
where A, = I, for 0 <j < m,
J .
(5.4) A= X ) 2uod,
i=0

and £U~" is the (j — i) time derivative of =%~ al. 4,,,, is an unbounded
operator with domain D(A,, )= {V € L> X L? such that A V€ Dy for j=
0,...,m}.

For 0 <j < m + 1 the jth time derivative of = (£)! is denoted by 7). We
will show that if « is large enough then A, ,, is invertible and that 4, ,, has
properties which are similar to the properties of (£)"*!. (Note that if the coeffi-
cients of L are independent of ¢ then Am = (L)1)

THEOREM 5.1. Let £, = 2, E, = (1 — I ®), and for m > 2
m—2 m\ R .
y ( l)y(m_[)E’:‘li’- N

(5.5) E, .. =.,§ﬂ(1— mg O — -
=0
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(where E[V is the inverse of E)). E, is an unbounded operator on L* X L* with domain
Dg. The following conditions are satisfied for integers | > 0 and m > 1:
(1) Ey,...,E,: (H*? N Hy) X H*' > H'*' X H' exist and are bounded.

) El‘l,...,Em H"' X H' - (H'*> n H}) x H'*" exist and are bounded.
34, = - E on D(A,).

The next result is an analogue of Theorem 5.1 for operators on S, X S, which
approximate the operators EJ%,...,E. ! and 4;!. Analogous to (5.3), the derivatives
of UM = Z,U, can be written
(5.6) Uh(m+l) = /fm+1,h0h
whereAAO’h =[Lfor0<j<m

j .
An= > (j-)gh('l_!)Ai,h’
i=0\!
and £V is the (j — i) time derivative of 2, =%, —al. For1<j<m+1the
jth time derivative of 7, = (&,) ! is denoted by 7,/).

THEOREM 5.2. For a sufficiently large the operators E, , = %, E, , = Z,(I — I,®)
and, form > 2,

m—2
(5-7) E,i1n =$h(l— mﬂ(l) Z ( )‘7-( _I)E[+2h o E;;:}h
=0
are invertible on S, X S;; form > 1 a d2 <s<r,
(5.8) A, =E, - E, onS, xS,
and for F = (}}) € H* > X H*™?
(5.9) ICE" = E2) Flly < (@) b (IAl,—2 +140,-2),

where E,}, are extended to L* X L? by the formula E,}, = E;}, (5 ) (where P is the
L? orthogonal projection onto Sy,).

Remark. The seminorm ||| - |||y used in (5.9) can be replaced by the seminorm
2 12 ¢
(“‘Pl” +(Th(t)¢2’¢2)) for((p:) eL?x L?

and for any ¢ € [0, 7] since these seminorms are equivalent (see (3.16)). We use
IIl - llo since the operators E,,...,E, and E, ,,...,E,, , will only be used at z = 0 to
construct the special initial data for the semldlscrete problem.

The proofs of Theorems 5.1 and 5.2 are in Section 8 which appears in the

supplements section of this issue.

6. L? Error Estimates. In this section we combine the error estimates of Section 3
and Section 4 using a special choice for U,(0) which is based on the operators
constructed in Section 5. In Sections 2, 3, and 4 the following three equations were
defined and error estimates were derived which did not include estimates for the
initial data.

The hyperbolic equation:

(6.1) U=2U t<€]o0,r], U(O)=(Zz).
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The semidiscrete equation:

(6-2) (Uh)l =$hUh9 e [O’ T]9 (Uh)(o) = fir_nl,h(o)“fm(o)(zz)'

The fully discrete equation:

0, . Wtt=Pw", n=0,1,..,N-1,
(6.3)

. 0
wo = Q61(€ g)(f + 0,k 2(0) + g,k*(£2(0) +$<l>(o)))(zo),
t
where m is an integer greater than or equal to » + 1 and P is the L? orthogonal
projection onto S,.

The functions u; defined by
=2,
ug=u’, wy=ud, u;=-3 (j p Z)LU"Z"‘)(O)uk forj > 2,
k=0

were introduced in Section 2 where assumptions on u; implied existence of time
derivatives of u. These assumptions were that u; € D, = H> N Hy. The three
lemmas in this section contain estimates for the error in the initial data for the
semidiscrete equation and for the fully discrete equation, as well as a bound for the
time derivatives of the solution of the semidiscrete equation. The following lemma
contains the error estimate for the initial data for the semidiscrete equation.

LemMA 6.1. If u; € Dy for j=0,...,m + s — 3 and u,,,,_, € H;, then for 2 <
s<randj=0,....m—1,
(6.4) lv2©) - U2 Ol < e (J8%mss—1 +uflnrs2)-
Proof. Since U = e~*U and U, = e~*U,, U(0) = U(0), U,(0) = U,(0) and
J . ) ) .
u0) - 50 = E (1)@ (60 - 50(0).
=0
Therefore,

v(0) = GL(O)o-

J
lv2© - v Ol < c X |
Using (5.3),

t

and from (5.6) and (6.2)

0i0(0) = 4,4,(0)0,(0) = 4, ,(0) 4,4 (0) 4, (0)( Zz )

t

Theorems 5.1 and 5.2 imply that

(6.5) T(0) - U(0) = (4,(0)4,(0) —ﬁ/‘h(0>ff;1h(0))"fm(°)(Zz)

t

N A . o ~ u®
= (E/;—ll U Em1 - E1+11,h e Em?h)(O)Am(O)( uo)'
t
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Since
-1 B A U 2 | U ~E |
EI+1 o Em El+1,h Em,h
m
— -1 R AE | -1 _ fp-1\f-1 ... -1
- Z El+1,h i—l,h( 1 El,h)Ei+1 Em
i=[+1
and

A uO ~im n m m—
A,,,<o>(uo) = 0™ = ¥ (7)) 'v(0)
t =0
m
_ m m—tf U\
h EO( 1)(_a) (“/+1)’
it follows from Theorems 5.1 and 5.2 that

m

lo2© = 62Ol < 08 X (s + ol —2)

(6.4) follows from this inequality because from (2.15)

m

Igo(”“l”s—z +”“/+1”s—2) < C(”“°”m+s—1 + ||u?||m+s—2)‘

The next lemma contains a bound for the time derivatives at ¢ = 0 of the solution of
the semidiscrete equation.

LemMA 6.2. Ifu, € Dy forj = 0,...,m — 1 and u,, € Hy, then forj = 0,...,m,
(6.6) ||| Uh(j)(0)| 0 S C(||“°||m+1 + ”u?”m>
Proof. Since U, = e*U,,

J oy
U(0) = X () a-000).
=0

Also, from (5.6) and (6.2)

0:"(0) = 4,003, (0) = A,,h(0>14:nl,h<°>“fm(°)( ZZ)'

t
Using Theorem 5.2
N A A N uo
0400 = (Bt -+ B0V, |

4

(8.36) implies that

GOl < €

0| )

0
and (6.6) follows from this estimate.

The following lemma is the error estimate for the initial data for the fully discrete
equation.

LEMMA 6.3. If u; € Dy for j=0,...,m + 5 — 3 and u,,,,_, € Hy, then for 2 <
s<r,

(6.7) [106(G(0) = W)y < C*(Illss—1 + [Pl s2)-
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Proof. By definition

OO = (g g)(l + qk2(0) + ¢,k*(£(0) +$“)(O)))(Zz)

t
and

QOUh(O) = (I + k& + ‘hkz("gpoz + g()(l)))Uh(O)-
Hence
QO(WO - Uh(o))

= (& D)+ ak(2©) = ar) + g,k((2(0) - a1) + ga)(o)))(zg)

t

—(1+ gk (2, = al) + g,k*((Z — oI’ + Z))U,(0)

uO
—(g g)(—qlkal + gk} (-2a2(0) + aZI))(u?)
+(-qikal + g,k*(-2a%, + o1 ))U,(0)
_ (P 0

0 P)((l + qika + g,k%*) 1 + ¢,k 2(0)

+4,k*(£2(0) +$<l>(0)))(zz)

-~

—((1 + ke + q,k%2) I + ik Py + ¢,k (L3¢ + Z0))U,(0)
(P S)(-2a:ka(2(0) - an))

=(P0
0 P

+(-2g,k%a(Z, — al))U,(0)

uO
uy
)((1 + gika + g,k%2) 1 +(qik + 2q,k%) £(0)

(220 + 200)| 4

t
—((1 + qka + qyk%? )1 +(qik + 2q,k%) Zy + 4,k (L7 + ZD)) U, (0).
Therefore,

0o(W° = U,(0) = (1 + gk + qszaz)[(g 2)(52) - U,,(O)]

+(‘11k + 242k2“)[(g g)"?(o)(zg) _foUh(O)]

+q2k2((§ 2)(92(o>+$“><0>(ZZ))—(%%%D)Uh(m).
Since U, (0) = U, (0),
QO(WO - Uh(O))
__=(P O)[(1+ k 2. 2\(7(0) — T
0 P Qka + gk )(U(O) U,(0))
+( g1k + 2¢,k%)(TD(0) = TP(0)) + 4,k (0P (0) - T2(0))].



410 LAURENCE A. BALES

From (6.5) in the proof of Lemma 6.1 it follows that

I”QO(WO Uh(O) ”IO Chs(”uoll’"” 1+||u0“m+s 2)

This completes the proof of the lemma.

The next theorem combines the estimates in Lemmas 6.1, 6.2 and 6.3 with the
semidiscrete error estimates (Theorem 3.2) and the fully discrete error estimate
(Theorem 4.1).

THEOREM 6.1. Let m be an integer such that m > v + 1 and v = Nk. If u; € D, for

i=0,....m+s—3andu,, , , <€ Hj thenfor2 <s<randj=0,1,....,m— 2,
(6.8) @) = G2l < (e s—1 +ufss2),

(69)  llen(Ui(ty) = W)y < CCh* + k) (el ss-1 + [l 2)

(6.10)  [|U(tn) = WMy < C(* + &) (| mss—1 + [ s-2),

and

Julen) = W[+ [T (u (1) = W3Y))|
< C(hs + kv)(”uO”m*’-‘_l + I|u?”m+s—2)’

Proof. (6.8) follows from (3.25) in Theorem 3.2 (J = m — 2) and Lemma 6.1. (6.9)
follows from (4.38) in Theorem 4.1 and Lemmas 6.2 and 6.3. (6.10) follows from
(6.9) and (4.16) (or (4.14) if g, = 0) in Lemma 4.2. (6.8), (6.10) and the triangle
inequality imply (6.11). This completes the proof.

(6.11) shows that the error u(ty) — W;" is optimal in L* W, n=0,1,...,N, is
the first component of the solution W" € S, X §, of (6.3).

(6.11)

7. Examples of the Approximate Solution Operator 7, for the Dirichlet Problem.
These examples and more references are given in Bramble, Schatz, Thomée and
Wahlbin [6].

(1) The “Standard > Galerkin Method. This is the example mentioned in Section 3.
Here S, C H, and is assumed to satisfy the approximation property

in£ {Iw—=xlI+ Alw = xll:} < Ch|w]s forl<s<r.
X

€5y

The operators T,: L* — S, are defined by

a(T,f,x) = (f,x) forx €S,.
(2) Two Methods of Nitsche. The methods use the bilinear form

B9 ) = alo.9) = (0. 55 ) = (0.9} + B0, 4),

where ( - , - ) denotes the inner product in L*(3R), 9,/3» the conormal derivative on

0% and B a positive constant. The functions in S, are not required to vanish on 9.

If S, C H' with the restrictions to 9% in H'(9R), and if S, satisfies

o {Iw = xll + Allw = xls + B2 |w = xll2ee) + #*w = xlmow} < CHw,
h

2<s<r,
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and an “inverse” assumption

' = < ChV2xllm forx € S,

v || 1209

then it can be shown that B, is positive definite on S, for B sufficiently large. The
operators T,: L* — S, are defined by

B,(T,f,x)=(f,x) forx €S,.
If in addition to the above assumptions,

Ixllzz@e) < Coh™ il forx € S,

where C, is sufficiently small, then B, is positive definite on S, even with § = 0.
(3) The Lagrange Multiplier Method of Babuska. Let {7,} be a family of
subspaces of H! which satisfies

inf (= xl+ Bl = xh) < Ol forl s <7,

and let { 7,/ } be a family of subspaces of H'(3Q) such that

inf_ {h72|w’ = X' |a1200) + B/ w = X/l m20e |
X' €7y

< Ch¥|w’

W

oo fori<s<r—
Assume also the inverse property
Xl @y < Ch7H|X 2200y for x” € 7.
With 8 sufficiently small the family { S, } is defined by
S, = {X € Tsn, (X, x')=0forallx’ €7, }.

It can be shown that the bilinear form a(-, -) is positive definite on S,. 7,: L*> - S,
is defined by

a(Thf’ X) = (f’ X) fOfX € Sh'

These methods satisfy the following three properties:
(i) T,, is selfadjoint, positive semidefinite on L?, and positive definite on S,
(i) If j is an integer which is greater than or equal to 0, then there exists a
constant C(j) such that

(79 = 19) f| < C()RIflls-2 for2<s<r.

(iii) Define L, to be 77! on S,. If j is a nonnegative integer, then there exists a
constant C(j) which is independent of 4 such that for s, ¢ € [0, 7]

(L (1), ¢)| < C(j)(Ly(s)d,9) forall € S,.

The proof of (i) is given in Section 8 of Bramble, Schatz, Thomée and Wahlbin [6].
The proof of property (ii) is in Theorem 5.1 of Sammon [21].
The following lemma contains a proof of (ii) for the “standard” Galerkin method.

LEMMA 7.1. For f € L?, let T), f be defined by the “standard > Galerkin method, i.e.,
S, € HE and

(7.1) a(T,f,x) = (f,x) forallx €S,.
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Then, for2 < s < r,

(7.2) (T = T2)f]l, < CO)E M -2
and
(7.3) (T = 19) fl| < €IS ls—an

Proof. The proof is by induction on j. The estimates|I(7T — 7,)flll; < Ch* Y| f]l,-,
and |(T — T,)f|| < Ch*||f|l,—, are well known. Let e = (7, — T)f and eV =
(T, — TY)f. 1t follows from (7.1) that a(e, x) = O for all x € S,,. Therefore,

m

¥ (’;?)a(’"_f)(e(j), x)=0 forallx € S,.
j=0

Since
le™]i < Ca(et™, )

= Cla(e™, et™ — x)
m—1 m ' . '
+ jgo (j )[a<m N(eD, et - x) — am =D (e, e(m))]),

<zle™li+c

m—1 s 2
2 NPl + e = x]h
Jj=0

for any x € S,,, it follows by induction and the approximation property that

le™lh < C(m)n> = f[ls-2.
This is (7.2). To prove (7.3) note that for any ¢ € L* and x € S,

(e, )= (e"™, LTp) = a(e™, Tp)
m m—1
- MY (Do) T — ) — MG pmen
jgo(])a !(e/,T¢ X) j;o(j)(eJ,L JT¢)

m m

-1
< c( newnl) inf 176 = xh+ €' ] 1Tl
0 XES, =0

J= J

(7.3) follows by induction using (7.2) and the approximation property.

The next lemma applies to any method for which 7, is symmetric and which
satisfies (ii) and an inverse property.

LeMMA 7.2. If T, is symmetric and satisfies (ii) and the inverse property
(iv) (L9, 9)'/* < Ch7Y||¢|| for all ¢ € S,
then for s, t € [0, 7] and integers I, m > 0,

(7.4) 1LY ()T (1) ol < €(1, m)| ¢l
and
(7.5) T (1) Ly (s) 8] < C(2, m)llgll,

where C(l, m) is independent of h.
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Proof. 1t follows from (iv) that | L,¥|| < Ch~?||y|| for all ¢ € S,. Since
L, (s)T™(t) = L, (s)T{™(t) — PL(s)T™ (1) + PL(s)T™(r)
= L,(s)P(T{™(t) — T (t)) + L,(s)P(T(s) — T,(s))L(s)T (1)

+PL(s)T™ (1),
property (ii) (with s = 2), property (iv) and the triangle inequality imply that
(7.6) Ly (s)T{™ (1) 9| < Cllo| forallg € S,.

This is (7.4) with [ = 0.
Also, since

(T (D) L, (5) 9, ¥) (6, L(s) T (1))
T(/) f)L )¢. — — sup ,
T Lol = e, 7 per I
it follows from (7.6) that
(7.7) ITO() Ly (5)9] < Cllo|l forallg € S,.

This is (7.5) with m = 0. The remaining parts of the lemma are proved using (7.6)
and (7.7). For example, since

LP ()T (1) = ~(Ly ()T (5))(Ly (5) T (1))
and
mn m 3
L)1 = - (T )L 2O TN LT 6Ly ()T (1),
j=1

it follows by induction on m (using (7.6) and (7.7)) that
(7.8) L™ (s)T, ()9l < Cllo|| forallg € S,.
Similarly, the estimate
(7.9) |7, (1)L (s)¢] < Cllgll forall ¢ € S,
can be proved. Finally, the identities

L ()T (¢) = (L ()T, (0)) (L, (1) T (2))
and

T Ly (s) = (T () Ly ()T (s) L™ (s))
used with (7.6), (7.7), (7.8) and (7.9) complete the proof of the lemma.
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